import os.path as osp import numpy as np import numpy.random as npr import PIL import torch import torchvision import xml.etree.ElementTree as ET import json import copy import math def singleton(class_): instances = {} def getinstance(*args, **kwargs): if class_ not in instances: instances[class_] = class_(*args, **kwargs) return instances[class_] return getinstance @singleton class get_estimator(object): def __init__(self): self.estimator = {} def register(self, estimf): self.estimator[estimf.__name__] = estimf def __call__(self, cfg): if cfg is None: return None t = cfg.type return self.estimator[t](**cfg.args) def register(): def wrapper(class_): get_estimator().register(class_) return class_ return wrapper