import torch import torch.distributed as dist from torchvision import transforms as tvtrans import os import os.path as osp import time import timeit import copy import json import pickle import PIL.Image import numpy as np from datetime import datetime from easydict import EasyDict as edict from collections import OrderedDict from lib.cfg_holder import cfg_unique_holder as cfguh from lib.data_factory import get_dataset, get_sampler, collate from lib.model_zoo import \ get_model, get_optimizer, get_scheduler from lib.log_service import print_log from ..utils import train as train_base from ..utils import eval as eval_base from ..utils import train_stage as tsbase from ..utils import eval_stage as esbase from .. import sync ############### # some helper # ############### def atomic_save(cfg, net, opt, step, path): if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net sd = netm.state_dict() slimmed_sd = [(ki, vi) for ki, vi in sd.items() if ki.find('first_stage_model')!=0 and ki.find('cond_stage_model')!=0] checkpoint = { "config" : cfg, "state_dict" : OrderedDict(slimmed_sd), "step" : step} if opt is not None: checkpoint['optimizer_states'] = opt.state_dict() import io import fsspec bytesbuffer = io.BytesIO() torch.save(checkpoint, bytesbuffer) with fsspec.open(path, "wb") as f: f.write(bytesbuffer.getvalue()) def load_state_dict(net, cfg): pretrained_pth_full = cfg.get('pretrained_pth_full' , None) pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None) pretrained_pth = cfg.get('pretrained_pth' , None) pretrained_ckpt = cfg.get('pretrained_ckpt' , None) pretrained_pth_dm = cfg.get('pretrained_pth_dm' , None) pretrained_pth_ema = cfg.get('pretrained_pth_ema' , None) strict_sd = cfg.get('strict_sd', False) errmsg = "Overlapped model state_dict! This is undesired behavior!" if pretrained_pth_full is not None or pretrained_ckpt_full is not None: assert (pretrained_pth is None) and \ (pretrained_ckpt is None) and \ (pretrained_pth_dm is None) and \ (pretrained_pth_ema is None), errmsg if pretrained_pth_full is not None: target_file = pretrained_pth_full sd = torch.load(target_file, map_location='cpu') assert pretrained_ckpt is None, errmsg else: target_file = pretrained_ckpt_full sd = torch.load(target_file, map_location='cpu')['state_dict'] print_log('Load full model from [{}] strict [{}].'.format( target_file, strict_sd)) net.load_state_dict(sd, strict=strict_sd) if pretrained_pth is not None or pretrained_ckpt is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth_dm is None) and \ (pretrained_pth_ema is None), errmsg if pretrained_pth is not None: target_file = pretrained_pth sd = torch.load(target_file, map_location='cpu') assert pretrained_ckpt is None, errmsg else: target_file = pretrained_ckpt sd = torch.load(target_file, map_location='cpu')['state_dict'] print_log('Load model from [{}] strict [{}].'.format( target_file, strict_sd)) sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \ if ki.find('first_stage_model')==0 or ki.find('cond_stage_model')==0] sd.update(OrderedDict(sd_extra)) net.load_state_dict(sd, strict=strict_sd) if pretrained_pth_dm is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth is None) and \ (pretrained_ckpt is None), errmsg print_log('Load diffusion model from [{}] strict [{}].'.format( pretrained_pth_dm, strict_sd)) sd = torch.load(pretrained_pth_dm, map_location='cpu') net.model.diffusion_model.load_state_dict(sd, strict=strict_sd) if pretrained_pth_ema is not None: assert (pretrained_ckpt_full is None) and \ (pretrained_pth_full is None) and \ (pretrained_pth is None) and \ (pretrained_ckpt is None), errmsg print_log('Load unet ema model from [{}] strict [{}].'.format( pretrained_pth_ema, strict_sd)) sd = torch.load(pretrained_pth_ema, map_location='cpu') net.model_ema.load_state_dict(sd, strict=strict_sd) def auto_merge_imlist(imlist, max=64): imlist = imlist[0:max] h, w = imlist[0].shape[0:2] num_images = len(imlist) num_row = int(np.sqrt(num_images)) num_col = num_images//num_row + 1 if num_images%num_row!=0 else num_images//num_row canvas = np.zeros([num_row*h, num_col*w, 3], dtype=np.uint8) for idx, im in enumerate(imlist): hi = (idx // num_col) * h wi = (idx % num_col) * w canvas[hi:hi+h, wi:wi+w, :] = im return canvas def latent2im(net, latent): single_input = len(latent.shape) == 3 if single_input: latent = latent[None] im = net.decode_image(latent.to(net.device)) im = torch.clamp((im+1.0)/2.0, min=0.0, max=1.0) im = [tvtrans.ToPILImage()(i) for i in im] if single_input: im = im[0] return im def im2latent(net, im): single_input = not isinstance(im, list) if single_input: im = [im] im = torch.stack([tvtrans.ToTensor()(i) for i in im], dim=0) im = (im*2-1).to(net.device) z = net.encode_image(im) if single_input: z = z[0] return z class color_adjust(object): def __init__(self, ref_from, ref_to): x0, m0, std0 = self.get_data_and_stat(ref_from) x1, m1, std1 = self.get_data_and_stat(ref_to) self.ref_from_stat = (m0, std0) self.ref_to_stat = (m1, std1) self.ref_from = self.preprocess(x0).reshape(-1, 3) self.ref_to = x1.reshape(-1, 3) def get_data_and_stat(self, x): if isinstance(x, str): x = np.array(PIL.Image.open(x)) elif isinstance(x, PIL.Image.Image): x = np.array(x) elif isinstance(x, torch.Tensor): x = torch.clamp(x, min=0.0, max=1.0) x = np.array(tvtrans.ToPILImage()(x)) elif isinstance(x, np.ndarray): pass else: raise ValueError x = x.astype(float) m = np.reshape(x, (-1, 3)).mean(0) s = np.reshape(x, (-1, 3)).std(0) return x, m, s def preprocess(self, x): m0, s0 = self.ref_from_stat m1, s1 = self.ref_to_stat y = ((x-m0)/s0)*s1 + m1 return y def __call__(self, xin, keep=0, simple=False): xin, _, _ = self.get_data_and_stat(xin) x = self.preprocess(xin) if simple: y = (x*(1-keep) + xin*keep) y = np.clip(y, 0, 255).astype(np.uint8) return y h, w = x.shape[:2] x = x.reshape(-1, 3) y = [] for chi in range(3): yi = self.pdf_transfer_1d(self.ref_from[:, chi], self.ref_to[:, chi], x[:, chi]) y.append(yi) y = np.stack(y, axis=1) y = y.reshape(h, w, 3) y = (y.astype(float)*(1-keep) + xin.astype(float)*keep) y = np.clip(y, 0, 255).astype(np.uint8) return y def pdf_transfer_1d(self, arr_fo, arr_to, arr_in, n=600): arr = np.concatenate((arr_fo, arr_to)) min_v = arr.min() - 1e-6 max_v = arr.max() + 1e-6 min_vto = arr_to.min() - 1e-6 max_vto = arr_to.max() + 1e-6 xs = np.array( [min_v + (max_v - min_v) * i / n for i in range(n + 1)]) hist_fo, _ = np.histogram(arr_fo, xs) hist_to, _ = np.histogram(arr_to, xs) xs = xs[:-1] # compute probability distribution cum_fo = np.cumsum(hist_fo) cum_to = np.cumsum(hist_to) d_fo = cum_fo / cum_fo[-1] d_to = cum_to / cum_to[-1] # transfer t_d = np.interp(d_fo, d_to, xs) t_d[d_fo <= d_to[ 0]] = min_vto t_d[d_fo >= d_to[-1]] = max_vto arr_out = np.interp(arr_in, xs, t_d) return arr_out ######## # main # ######## class eval(eval_base): def prepare_model(self): cfg = cfguh().cfg net = get_model()(cfg.model) if cfg.env.cuda: net.to(self.local_rank) load_state_dict(net, cfg.eval) #<--- added net = torch.nn.parallel.DistributedDataParallel( net, device_ids=[self.local_rank], find_unused_parameters=True) net.eval() return {'net' : net,} class eval_stage(esbase): """ This is eval stage that can check comprehensive results """ def __init__(self): from ..model_zoo.ddim import DDIMSampler self.sampler = DDIMSampler def get_net(self, paras): return paras['net'] def get_image_path(self): if 'train' in cfguh().cfg: log_dir = cfguh().cfg.train.log_dir else: log_dir = cfguh().cfg.eval.log_dir return os.path.join(log_dir, "udemo") @torch.no_grad() def sample(self, net, sampler, prompt, output_dim, scale, n_samples, ddim_steps, ddim_eta): h, w = output_dim uc = None if scale != 1.0: uc = net.get_learned_conditioning(n_samples * [""]) c = net.get_learned_conditioning(n_samples * [prompt]) shape = [4, h//8, w//8] rv = sampler.sample( S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta) return rv def save_images(self, pil_list, name, path, suffix=''): canvas = auto_merge_imlist([np.array(i) for i in pil_list]) image_name = '{}{}.png'.format(name, suffix) PIL.Image.fromarray(canvas).save(osp.join(path, image_name)) def __call__(self, **paras): cfg = cfguh().cfg cfgv = cfg.eval net = paras['net'] eval_cnt = paras.get('eval_cnt', None) fix_seed = cfgv.get('fix_seed', False) LRANK = sync.get_rank('local') LWSIZE = sync.get_world_size('local') image_path = self.get_image_path() self.create_dir(image_path) eval_cnt = paras.get('eval_cnt', None) suffix='' if eval_cnt is None else '_itern'+str(eval_cnt) if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net with_ema = getattr(netm, 'model_ema', None) is not None sampler = self.sampler(netm) setattr(netm, 'device', LRANK) # Trick replicate = cfgv.get('replicate', 1) conditioning = cfgv.conditioning * replicate conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE] seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE] for prompti, seedi in zip(conditioning_local, seed_increment): if prompti == 'SKIP': continue draw_filename = prompti.strip().replace(' ', '-') if fix_seed: np.random.seed(cfg.env.rnd_seed + seedi) torch.manual_seed(cfg.env.rnd_seed + seedi + 100) suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100) else: suffixi = suffix if with_ema: with netm.ema_scope(): x, _ = self.sample(netm, sampler, prompti, **cfgv.sample) else: x, _ = self.sample(netm, sampler, prompti, **cfgv.sample) demo_image = latent2im(netm, x) self.save_images(demo_image, draw_filename, image_path, suffix=suffixi) if eval_cnt is not None: print_log('Demo printed for {}'.format(eval_cnt)) return {} ################## # eval variation # ################## class eval_stage_variation(eval_stage): @torch.no_grad() def sample(self, net, sampler, visual_hint, output_dim, scale, n_samples, ddim_steps, ddim_eta): h, w = output_dim vh = tvtrans.ToTensor()(PIL.Image.open(visual_hint))[None].to(net.device) c = net.get_learned_conditioning(vh) c = c.repeat(n_samples, 1, 1) uc = None if scale != 1.0: dummy = torch.zeros_like(vh) uc = net.get_learned_conditioning(dummy) uc = uc.repeat(n_samples, 1, 1) shape = [4, h//8, w//8] rv = sampler.sample( S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta) return rv def __call__(self, **paras): cfg = cfguh().cfg cfgv = cfg.eval net = paras['net'] eval_cnt = paras.get('eval_cnt', None) fix_seed = cfgv.get('fix_seed', False) LRANK = sync.get_rank('local') LWSIZE = sync.get_world_size('local') image_path = self.get_image_path() self.create_dir(image_path) eval_cnt = paras.get('eval_cnt', None) suffix='' if eval_cnt is None else '_'+str(eval_cnt) if isinstance(net, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): netm = net.module else: netm = net with_ema = getattr(netm, 'model_ema', None) is not None sampler = self.sampler(netm) setattr(netm, 'device', LRANK) # Trick color_adj = cfguh().cfg.eval.get('color_adj', False) color_adj_keep_ratio = cfguh().cfg.eval.get('color_adj_keep_ratio', 0.5) color_adj_simple = cfguh().cfg.eval.get('color_adj_simple', True) replicate = cfgv.get('replicate', 1) conditioning = cfgv.conditioning * replicate conditioning_local = conditioning[LRANK : len(conditioning) : LWSIZE] seed_increment = [i for i in range(len(conditioning))][LRANK : len(conditioning) : LWSIZE] for ci, seedi in zip(conditioning_local, seed_increment): if ci == 'SKIP': continue draw_filename = osp.splitext(osp.basename(ci))[0] if fix_seed: np.random.seed(cfg.env.rnd_seed + seedi) torch.manual_seed(cfg.env.rnd_seed + seedi + 100) suffixi = suffix + "_seed{}".format(cfg.env.rnd_seed + seedi + 100) else: suffixi = suffix if with_ema: with netm.ema_scope(): x, _ = self.sample(netm, sampler, ci, **cfgv.sample) else: x, _ = self.sample(netm, sampler, ci, **cfgv.sample) demo_image = latent2im(netm, x) if color_adj: x_adj = [] for demoi in demo_image: color_adj_f = color_adjust(ref_from=demoi, ref_to=ci) xi_adj = color_adj_f(demoi, keep=color_adj_keep_ratio, simple=color_adj_simple) x_adj.append(xi_adj) demo_image = x_adj self.save_images(demo_image, draw_filename, image_path, suffix=suffixi) if eval_cnt is not None: print_log('Demo printed for {}'.format(eval_cnt)) return {}