import torch import numpy as np from tqdm import tqdm from functools import partial from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like from .ddim import DDIMSampler class DDIMSampler_DualModel(DDIMSampler): def __init__(self, model_t2i, model_v2i, schedule="linear", **kwargs): self.model = model_t2i self.model_t2i = model_t2i self.model_v2i = model_v2i self.device = self.model_t2i.device self.ddpm_num_timesteps = model_t2i.num_timesteps self.schedule = schedule @torch.no_grad() def sample_text(self, *args, **kwargs): self.cond_type = 'prompt' self.p_sample_model_type = 't2i' return self.sample(*args, **kwargs) @torch.no_grad() def sample_vision(self, *args, **kwargs): self.cond_type = 'vision' self.p_sample_model_type = 'v2i' return self.sample(*args, **kwargs) @torch.no_grad() def sample(self, steps, shape, xt=None, conditioning=None, eta=0., temperature=1., noise_dropout=0., verbose=True, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None,): self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose) # sampling print(f'Data shape for DDIM sampling is {shape}, eta {eta}') samples, intermediates = self.ddim_sampling( conditioning, shape, xt=xt, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning,) return samples, intermediates @torch.no_grad() def ddim_sampling(self, conditioning, shape, xt=None, ddim_use_original_steps=False, timesteps=None, log_every_t=100, temperature=1., noise_dropout=0., unconditional_guidance_scale=1., unconditional_conditioning=None,): device = self.model.betas.device bs = shape[0] if xt is None: img = torch.randn(shape, device=device) else: img = xt if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((bs,), step, device=device, dtype=torch.long) outs = self.p_sample_ddim(img, conditioning, ts, index=index, use_original_steps=ddim_use_original_steps, temperature=temperature, noise_dropout=noise_dropout, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) img, pred_x0 = outs if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, conditioning, t, index, repeat_noise=False, use_original_steps=False, temperature=1., noise_dropout=0., unconditional_guidance_scale=1., unconditional_conditioning=None): b, *_, device = *x.shape, x.device if self.p_sample_model_type == 't2i': apply_model = self.model_t2i.apply_model elif self.p_sample_model_type == 'v2i': apply_model = self.model_v2i.apply_model if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = apply_model(x, t, conditioning) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, conditioning]) e_t_uncond, e_t = apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 @torch.no_grad() def sample_mixed(self, steps, steps_t2i, steps_v2i, shape, xt=None, c_prompt=None, c_vision=None, eta=0., temperature=1., noise_dropout=0., verbose=True, log_every_t=100, uc_scale=1., uc_prompt=None, uc_vision=None,): print(f'DDIM mixed sampling with shape {shape}, eta {eta}') print(f'steps_t2i {steps_t2i}') print(f'steps_v2i {steps_v2i}') self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose) self.ddim_timesteps_t2i = self.ddim_timesteps[steps_t2i] self.ddim_timesteps_v2i = self.ddim_timesteps[steps_v2i] samples, intermediates = self.ddim_sampling_mixed( c_prompt, c_vision, shape, xt=xt, noise_dropout=noise_dropout, temperature=temperature, log_every_t=log_every_t, uc_scale=uc_scale, uc_prompt=uc_prompt, uc_vision=uc_vision, ) return samples, intermediates @torch.no_grad() def ddim_sampling_mixed(self, c_prompt, c_vision, shape, xt=None, log_every_t=100, temperature=1., noise_dropout=0., uc_scale=1., uc_prompt=None, uc_vision=None, ): device = self.device bs = shape[0] if xt is None: img = torch.randn(shape, device=device) else: img = xt timesteps = self.ddim_timesteps intermediates = {'x_inter': [], 'pred_x0': []} time_range = np.flip(timesteps) total_steps = timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): if step in self.ddim_timesteps_t2i: self.p_sample_model_type = 't2i' conditioning = c_prompt unconditional_conditioning = uc_prompt elif step in self.ddim_timesteps_v2i: self.p_sample_model_type = 'v2i' conditioning = c_vision unconditional_conditioning = uc_vision else: raise ValueError # shouldn't reached index = total_steps - i - 1 ts = torch.full((bs,), step, device=device, dtype=torch.long) outs = self.p_sample_ddim( img, conditioning, ts, index=index, temperature=temperature, noise_dropout=noise_dropout, unconditional_guidance_scale=uc_scale, unconditional_conditioning=unconditional_conditioning) img, pred_x0 = outs if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates