Spaces:
Runtime error
Runtime error
Commit
·
7a990e9
1
Parent(s):
98b23d4
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,32 @@
|
|
1 |
-
import pandas as pd, numpy as np
|
2 |
import os
|
3 |
-
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import requests
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
@@ -26,20 +47,27 @@ def download_img(path):
|
|
26 |
return local_path
|
27 |
|
28 |
def predict(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
n_results=3
|
30 |
text_embeddings = compute_text_embeddings([query]).detach().numpy()
|
31 |
results = np.argsort((embeddings@text_embeddings.T)[:, 0])[-1:-n_results-1:-1]
|
32 |
paths = [download_img(df.iloc[i]['path']) for i in results]
|
33 |
print(paths)
|
34 |
-
return paths
|
35 |
|
36 |
title = "Draw to Search"
|
37 |
iface = gr.Interface(
|
38 |
fn=predict,
|
39 |
-
inputs=
|
40 |
-
outputs=[gr.outputs.Image(type="file"), gr.outputs.Image(type="file"), gr.outputs.Image(type="file")],
|
41 |
title=title,
|
42 |
-
examples=[["Sunset"]]
|
43 |
)
|
44 |
iface.launch(debug=True)
|
45 |
|
|
|
|
|
1 |
import os
|
|
|
2 |
|
3 |
+
from pathlib import Path
|
4 |
+
import pandas as pd, numpy as np
|
5 |
+
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
import gradio as gr
|
9 |
import requests
|
10 |
|
11 |
+
LABELS = Path('class_names.txt').read_text().splitlines()
|
12 |
+
class_model = nn.Sequential(
|
13 |
+
nn.Conv2d(1, 32, 3, padding='same'),
|
14 |
+
nn.ReLU(),
|
15 |
+
nn.MaxPool2d(2),
|
16 |
+
nn.Conv2d(32, 64, 3, padding='same'),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.MaxPool2d(2),
|
19 |
+
nn.Conv2d(64, 128, 3, padding='same'),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.MaxPool2d(2),
|
22 |
+
nn.Flatten(),
|
23 |
+
nn.Linear(1152, 256),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.Linear(256, len(LABELS)),
|
26 |
+
)
|
27 |
+
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
|
28 |
+
class_model.load_state_dict(state_dict, strict=False)
|
29 |
+
class_model.eval()
|
30 |
|
31 |
|
32 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
47 |
return local_path
|
48 |
|
49 |
def predict(query):
|
50 |
+
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
51 |
+
with torch.no_grad():
|
52 |
+
out = class_model(x)
|
53 |
+
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
54 |
+
values, indices = torch.topk(probabilities, 5)
|
55 |
+
|
56 |
+
query = values[0]
|
57 |
+
|
58 |
n_results=3
|
59 |
text_embeddings = compute_text_embeddings([query]).detach().numpy()
|
60 |
results = np.argsort((embeddings@text_embeddings.T)[:, 0])[-1:-n_results-1:-1]
|
61 |
paths = [download_img(df.iloc[i]['path']) for i in results]
|
62 |
print(paths)
|
63 |
+
return {LABELS[i]: v.item() for i, v in zip(indices, values)}, paths
|
64 |
|
65 |
title = "Draw to Search"
|
66 |
iface = gr.Interface(
|
67 |
fn=predict,
|
68 |
+
inputs='sketchpad',
|
69 |
+
outputs=[outputs='label', gr.outputs.Image(type="file"), gr.outputs.Image(type="file"), gr.outputs.Image(type="file")],
|
70 |
title=title,
|
|
|
71 |
)
|
72 |
iface.launch(debug=True)
|
73 |
|