gpt2_for_music / app.py
osanseviero's picture
Update app.py
8b6134c
import gradio as gr
import note_seq
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("TristanBehrens/js-fakes-4bars")
model = AutoModelForCausalLM.from_pretrained("TristanBehrens/js-fakes-4bars")
NOTE_LENGTH_16TH_120BPM = 0.25 * 60 / 120
BAR_LENGTH_120BPM = 4.0 * 60 / 120
SAMPLE_RATE=44100
def token_sequence_to_note_sequence(token_sequence, use_program=True, use_drums=True, instrument_mapper=None, only_piano=False):
if isinstance(token_sequence, str):
token_sequence = token_sequence.split()
note_sequence = empty_note_sequence()
# Render all notes.
current_program = 1
current_is_drum = False
current_instrument = 0
track_count = 0
for token_index, token in enumerate(token_sequence):
if token == "PIECE_START":
pass
elif token == "PIECE_END":
print("The end.")
break
elif token == "TRACK_START":
current_bar_index = 0
track_count += 1
pass
elif token == "TRACK_END":
pass
elif token == "KEYS_START":
pass
elif token == "KEYS_END":
pass
elif token.startswith("KEY="):
pass
elif token.startswith("INST"):
instrument = token.split("=")[-1]
if instrument != "DRUMS" and use_program:
if instrument_mapper is not None:
if instrument in instrument_mapper:
instrument = instrument_mapper[instrument]
current_program = int(instrument)
current_instrument = track_count
current_is_drum = False
if instrument == "DRUMS" and use_drums:
current_instrument = 0
current_program = 0
current_is_drum = True
elif token == "BAR_START":
current_time = current_bar_index * BAR_LENGTH_120BPM
current_notes = {}
elif token == "BAR_END":
current_bar_index += 1
pass
elif token.startswith("NOTE_ON"):
pitch = int(token.split("=")[-1])
note = note_sequence.notes.add()
note.start_time = current_time
note.end_time = current_time + 4 * NOTE_LENGTH_16TH_120BPM
note.pitch = pitch
note.instrument = current_instrument
note.program = current_program
note.velocity = 80
note.is_drum = current_is_drum
current_notes[pitch] = note
elif token.startswith("NOTE_OFF"):
pitch = int(token.split("=")[-1])
if pitch in current_notes:
note = current_notes[pitch]
note.end_time = current_time
elif token.startswith("TIME_DELTA"):
delta = float(token.split("=")[-1]) * NOTE_LENGTH_16TH_120BPM
current_time += delta
elif token.startswith("DENSITY="):
pass
elif token == "[PAD]":
pass
else:
#print(f"Ignored token {token}.")
pass
# Make the instruments right.
instruments_drums = []
for note in note_sequence.notes:
pair = [note.program, note.is_drum]
if pair not in instruments_drums:
instruments_drums += [pair]
note.instrument = instruments_drums.index(pair)
if only_piano:
for note in note_sequence.notes:
if not note.is_drum:
note.instrument = 0
note.program = 0
return note_sequence
def empty_note_sequence(qpm=120.0, total_time=0.0):
note_sequence = note_seq.protobuf.music_pb2.NoteSequence()
note_sequence.tempos.add().qpm = qpm
note_sequence.ticks_per_quarter = note_seq.constants.STANDARD_PPQ
note_sequence.total_time = total_time
return note_sequence
def process(text):
input_ids = tokenizer.encode(text, return_tensors="pt")
generated_ids = model.generate(input_ids, max_length=500)
generated_sequence = tokenizer.decode(generated_ids[0])
# Convert text of notes to audio
note_sequence = token_sequence_to_note_sequence(generated_sequence)
synth = note_seq.midi_synth.synthesize
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE)
note_plot = note_seq.plot_sequence(note_sequence, False)
array_of_floats /=1.414
array_of_floats *= 32767
int16_data = array_of_floats.astype(np.int16)
return SAMPLE_RATE, int16_data
title = "Music generation with GPT-2"
iface = gr.Interface(
fn=process,
inputs=[gr.inputs.Textbox(default="PIECE_START")],
outputs=['audio'],
title=title,
examples=[["PIECE_START"], ["PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=61"]],
article="This demo is inspired in the notebook from https://huggingface.co/TristanBehrens/js-fakes-4bars"
)
iface.launch(debug=True)