Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import models
|
7 |
+
|
8 |
+
def predict(image):
|
9 |
+
print(type(image))
|
10 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
11 |
+
# Load model
|
12 |
+
model = models.resnet50(pretrained=True)
|
13 |
+
num_ftrs = model.fc.in_features
|
14 |
+
model.fc = nn.Linear(num_ftrs, 1)
|
15 |
+
model.load_state_dict(torch.load("best_f1.pth"))
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
# Preprocess image
|
19 |
+
valid_transform = transforms.Compose([
|
20 |
+
# transforms.ToPILImage(), # Convert the image to a PIL Image
|
21 |
+
transforms.Resize((224, 224)), # Resize the image to final_size x final_size
|
22 |
+
transforms.ToTensor(), # Convert the image to a PyTorch tensor
|
23 |
+
transforms.Normalize( # Normalize the image
|
24 |
+
mean=[0.485, 0.456, 0.406],
|
25 |
+
std=[0.229, 0.224, 0.225]
|
26 |
+
)
|
27 |
+
])
|
28 |
+
|
29 |
+
input_batch = valid_transform(image).unsqueeze(0)
|
30 |
+
# Make prediction
|
31 |
+
with torch.no_grad():
|
32 |
+
output = model(input_batch)
|
33 |
+
output = torch.sigmoid(output).squeeze().item()
|
34 |
+
if output > 0.5:
|
35 |
+
predicted = 1
|
36 |
+
else:
|
37 |
+
predicted = 0
|
38 |
+
|
39 |
+
int2label = {0: "cat", 1: "dog"}
|
40 |
+
return int2label[predicted]
|
41 |
+
|
42 |
+
demo = gr.Interface(
|
43 |
+
predict,
|
44 |
+
inputs="image",
|
45 |
+
outputs="label",
|
46 |
+
title="Cats vs Dogs",
|
47 |
+
description="This model predicts whether an image contains a cat or a dog.",
|
48 |
+
examples = ["assets/7.jpg", "assets/44.jpg", "assets/82.jpg", "assets/83.jpg"]
|
49 |
+
)
|
50 |
+
|
51 |
+
demo.launch()
|