Spaces:
Sleeping
Sleeping
File size: 3,279 Bytes
74e80c5 49c0458 d43a9e4 da950f4 bbf4029 72bac2a bbf4029 b0719e4 6567232 38cceb0 6567232 49c0458 72bac2a d43a9e4 ce2be4d abe5285 fdf8211 c921aca d43a9e4 e326f0c da950f4 e326f0c b0719e4 da950f4 c921aca 6567232 c921aca da950f4 6567232 c921aca 6567232 c921aca d43a9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
import streamlit as st
import pandas as pd
import numpy as np
import huggingface_hub as hfh
import requests
os.makedirs("labels", exist_ok=True)
voters = [
"osman",
"eren",
"robin",
"mira",
"bilal",
"volunteer-1",
"volunteer-2",
"volunteer-3",
"volunteer-4",
"volunteer-5",
]
api = hfh.HfApi(token=os.environ.get("hf_token"))
# login page
with st.form("login"):
username = st.selectbox("Select voter", voters)
password = st.text_input("Password (get password from [email protected])", type="password")
submitted = st.form_submit_button("Login")
def get_list_of_images():
files = api.list_repo_tree(repo_id="aifred-smart-life-coach/capstone-images", repo_type="dataset", recursive=True,)
files = [file.path for file in files if file.path.endswith((".png", ".jpg"))]
return files
def get_one_from_queue(voter: str):
# get an image for the voter or return False if no image is left
# aifred-smart-life-coach/labels labels dataset
# labels dataset multiple csv files named as [voter name].csv
# each csv file has the image image path vote date, votes
url = f"https://huggingface.co/datasets/aifred-smart-life-coach/labels/raw/main/{voter}.csv"
# fetch file and save it to the labels folder
file_path = f"labels/{voter}.csv"
req = requests.get(url)
with open(file_path, "wb") as file:
file.write(req.content)
df = pd.read_csv(file_path)
print(df)
num_past_votes = df.shape[0]
print("num_past_votes", num_past_votes)
list_of_images = get_list_of_images()
print("list_of_images", len(list_of_images))
# get the list of images that are not present in the csv file
images_not_voted = list(set(list_of_images) - set(df["image_path"].tolist()))
print("images_not_voted", len(images_not_voted))
return {"image": images_not_voted[0]} if images_not_voted else False
print(get_one_from_queue("osman"))
if submitted:
if not password == os.environ.get("app_password"):
st.error("The password you entered is incorrect")
st.stop()
else:
st.success("Welcome, " + username)
st.write("You are now logged in")
with st.form("images"):
queue = get_one_from_queue(username)
if not queue:
st.write("You have voted for all the images")
st.stop()
# https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/kaggle-human-segmentation-dataset/Women%20I/img/woman_image_200.jpg
st.image(f"https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/{queue['image']}", width=300)
gender = st.select([
"Male",
"Female",
"Non-defining",
])
healthiness = st.slider("How healthy is this picture?", 0, 100, 50)
fat_level = st.slider("How fat is this picture?", 0, 100, 50)
muscle_level = st.slider("How muscular is this picture?", 0, 100, 50)
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
st.write("slideers", healthiness, fat_level, muscle_level)
# push the data to the database
st.write("Outside the form")
|