File size: 3,279 Bytes
74e80c5
49c0458
 
 
d43a9e4
da950f4
 
 
bbf4029
72bac2a
 
 
 
 
 
 
 
 
 
 
 
bbf4029
b0719e4
 
6567232
38cceb0
 
 
6567232
49c0458
72bac2a
d43a9e4
ce2be4d
abe5285
fdf8211
c921aca
 
d43a9e4
 
e326f0c
 
 
da950f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e326f0c
b0719e4
da950f4
c921aca
6567232
 
 
 
 
 
 
 
c921aca
 
 
 
 
da950f4
 
 
 
 
 
 
6567232
c921aca
 
6567232
 
 
 
c921aca
 
d43a9e4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import streamlit as st
import pandas as pd
import numpy as np
import huggingface_hub as hfh
import requests

os.makedirs("labels", exist_ok=True)

voters = [
    "osman",
    "eren",
    "robin",
    "mira",
    "bilal",
    "volunteer-1",
    "volunteer-2",
    "volunteer-3",
    "volunteer-4",
    "volunteer-5",
]

api = hfh.HfApi(token=os.environ.get("hf_token"))

# login page
with st.form("login"):
    username = st.selectbox("Select voter", voters)
    password = st.text_input("Password (get password from [email protected])", type="password")
    submitted = st.form_submit_button("Login")


def get_list_of_images():
    files = api.list_repo_tree(repo_id="aifred-smart-life-coach/capstone-images", repo_type="dataset", recursive=True,)
    files = [file.path for file in files if file.path.endswith((".png", ".jpg"))]
    return files


def get_one_from_queue(voter: str):
    # get an image for the voter or return False if no image is left
    # aifred-smart-life-coach/labels labels dataset
    # labels dataset multiple csv files named as [voter name].csv
    # each csv file has the image image path vote date, votes
    url = f"https://huggingface.co/datasets/aifred-smart-life-coach/labels/raw/main/{voter}.csv"

    # fetch file and save it to the labels folder
    file_path = f"labels/{voter}.csv"
    req = requests.get(url)
    with open(file_path, "wb") as file:
        file.write(req.content)

    df = pd.read_csv(file_path)
    print(df)
    num_past_votes = df.shape[0]
    print("num_past_votes", num_past_votes)

    list_of_images = get_list_of_images()
    print("list_of_images", len(list_of_images))

    # get the list of images that are not present in the csv file
    images_not_voted = list(set(list_of_images) - set(df["image_path"].tolist()))
    print("images_not_voted", len(images_not_voted))

    return {"image": images_not_voted[0]} if images_not_voted else False


print(get_one_from_queue("osman"))

if submitted:
    if not password == os.environ.get("app_password"):
        st.error("The password you entered is incorrect")
        st.stop()
    else:
        st.success("Welcome, " + username)
        st.write("You are now logged in")

    with st.form("images"):
        queue = get_one_from_queue(username)
        if not queue:
            st.write("You have voted for all the images")
            st.stop()
        # https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/kaggle-human-segmentation-dataset/Women%20I/img/woman_image_200.jpg
        st.image(f"https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/{queue['image']}", width=300)
        gender = st.select([
            "Male",
            "Female",
            "Non-defining",
        ])
        healthiness = st.slider("How healthy is this picture?", 0, 100, 50)
        fat_level = st.slider("How fat is this picture?", 0, 100, 50)
        muscle_level = st.slider("How muscular is this picture?", 0, 100, 50)
        # Every form must have a submit button.
        submitted = st.form_submit_button("Submit")
        if submitted:
            st.write("slideers", healthiness, fat_level, muscle_level)
            # push the data to the database

    st.write("Outside the form")