File size: 4,620 Bytes
74e80c5
49c0458
 
 
d43a9e4
da950f4
 
 
bbf4029
72bac2a
 
 
 
 
 
 
 
 
 
 
 
bbf4029
b0719e4
 
72bac2a
d43a9e4
ce2be4d
abe5285
fdf8211
c921aca
 
d43a9e4
 
e326f0c
 
 
da950f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e326f0c
b0719e4
a4ee4e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da950f4
c921aca
a4ee4e7
 
 
 
 
 
 
 
 
 
 
6567232
 
 
 
 
 
 
 
c921aca
a4ee4e7
 
c921aca
 
da950f4
a4ee4e7
 
 
 
 
da950f4
 
 
 
6567232
c921aca
 
6567232
a4ee4e7
 
 
 
 
 
 
c921aca
d43a9e4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import streamlit as st
import pandas as pd
import numpy as np
import huggingface_hub as hfh
import requests

os.makedirs("labels", exist_ok=True)

voters = [
    "osman",
    "eren",
    "robin",
    "mira",
    "bilal",
    "volunteer-1",
    "volunteer-2",
    "volunteer-3",
    "volunteer-4",
    "volunteer-5",
]

api = hfh.HfApi(token=os.environ.get("hf_token"))


def get_list_of_images():
    files = api.list_repo_tree(repo_id="aifred-smart-life-coach/capstone-images", repo_type="dataset", recursive=True,)
    files = [file.path for file in files if file.path.endswith((".png", ".jpg"))]
    return files


def get_one_from_queue(voter: str):
    # get an image for the voter or return False if no image is left
    # aifred-smart-life-coach/labels labels dataset
    # labels dataset multiple csv files named as [voter name].csv
    # each csv file has the image image path vote date, votes
    url = f"https://huggingface.co/datasets/aifred-smart-life-coach/labels/raw/main/{voter}.csv"

    # fetch file and save it to the labels folder
    file_path = f"labels/{voter}.csv"
    req = requests.get(url)
    with open(file_path, "wb") as file:
        file.write(req.content)

    df = pd.read_csv(file_path)
    print(df)
    num_past_votes = df.shape[0]
    print("num_past_votes", num_past_votes)

    list_of_images = get_list_of_images()
    print("list_of_images", len(list_of_images))

    # get the list of images that are not present in the csv file
    images_not_voted = list(set(list_of_images) - set(df["image_path"].tolist()))
    print("images_not_voted", len(images_not_voted))

    return {"image": images_not_voted[0]} if images_not_voted else False


def update_vote(
    voter: str,
    image: str,
    healthiness: int,
    fat_level: int,
    muscle_level: int,
):
    url = f"https://huggingface.co/datasets/aifred-smart-life-coach/labels/raw/main/{voter}.csv"

    # fetch file and save it to the labels folder
    file_path = f"labels/{voter}.csv"
    req = requests.get(url)
    with open(file_path, "wb") as file:
        file.write(req.content)

    df = pd.read_csv(file_path)
    print(df)
    num_past_votes = df.shape[0]
    print("num_past_votes", num_past_votes)

    # get the list of images that are not present in the csv file
    images_not_voted = list(set(list_of_images) - set(df["image_path"].tolist()))
    print("images_not_voted", len(images_not_voted))

    # update the csv file with the new vote
    new_row = {
        "image_path": image,
        "healthiness": healthiness,
        "fat_level": fat_level,
        "muscle_level": muscle_level,
    }
    df = df.append(new_row, ignore_index=True)
    df.to_csv(file_path, index=False)

    # push the file to the dataset
    api.push_to_hub(file_path, repo_id="aifred-smart-life-coach/labels", repo_type="dataset", commit_message=f"Voted for {image}")

print(get_one_from_queue("osman"))





# login page
with st.form("login"):
    username = st.selectbox("Select voter", voters)
    password = st.text_input("Password (get password from [email protected])", type="password")
    submitted = st.form_submit_button("Login")


if submitted:
    if not password == os.environ.get("app_password"):
        st.error("The password you entered is incorrect")
        st.stop()
    else:
        st.success("Welcome, " + username)
        st.write("You are now logged in")

    with st.form("images"):
        image_path = get_one_from_queue(username)
        if not image_path:
            st.write("You have voted for all the images")
            st.stop()
        # https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/kaggle-human-segmentation-dataset/Women%20I/img/woman_image_200.jpg
        print(image_path)
        image_url = f"https://huggingface.co/datasets/aifred-smart-life-coach/capstone-images/resolve/main/{image_path}"
        print(image_url)
        st.image(image_url, width=300)
        gender = st.selectbox("Gender", [
            "Male",
            "Female",
            "Non-defining",
        ])
        healthiness = st.slider("How healthy is this picture?", 0, 100, 50)
        fat_level = st.slider("How fat is this picture?", 0, 100, 50)
        muscle_level = st.slider("How muscular is this picture?", 0, 100, 50)
        # Every form must have a submit button.
        submitted_second = st.form_submit_button("Submit")


    if submitted_second:
        update_vote(username, image_path, healthiness, fat_level, muscle_level)
        st.write("Vote submitted")
        # push the data to the database

    st.write("Outside the form")