Spaces:
Runtime error
Runtime error
File size: 7,484 Bytes
3953219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import io
import cv2
import tqdm
import torch
import imageio
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class ReportGenerator():
"Generate markdown document, summarizing the training"
def __init__(self, run_id, out_dir=None, log_dir=None):
self.run_id, self.out_dir, self.log_dir = run_id, out_dir, log_dir
if log_dir:
self.train_logs = pd.read_csv(os.path.join(log_dir, 'train_logs.csv'))
self.metric_logs = pd.read_csv(os.path.join(log_dir, 'metric_logs.csv'))
if out_dir:
self.dice = pd.read_csv(os.path.join(out_dir, 'MeanDice_raw.csv'))
self.hausdorf = pd.read_csv(os.path.join(out_dir, 'HausdorffDistance_raw.csv'))
self.surface = pd.read_csv(os.path.join(out_dir, 'SurfaceDistance_raw.csv'))
self.mean_metrics = pd.DataFrame(
{"mean_dice" : [round(np.mean(self.dice[col]),3) for col in self.dice if col.startswith('class')],
"mean_hausdorf" : [round(np.mean(self.hausdorf[col]),3) for col in self.hausdorf if col.startswith('class')],
"mean_surface" : [round(np.mean(self.surface[col]),3) for col in self.surface if col.startswith('class')]
}).transpose()
def generate_report(self, loss_plot=True, metric_plot=True, boxplots=True, animation=True):
fn = os.path.join(self.run_id, 'report', 'SegmentationReport.md')
os.makedirs(os.path.join(self.run_id, 'report'), exist_ok=True)
with open(fn, 'w+') as f:
f.write('# Segmentation Report\n\n')
if loss_plot:
fig = self.plot_loss(self.train_logs, self.metric_logs)
plt.savefig(os.path.join(self.run_id, 'report', 'loss_and_lr.png'), dpi = 150)
with open(fn, 'a') as f:
f.write('## Loss, LR-Schedule and Key Metric\n')
f.write('\n\n')
if metric_plot:
fig = plt.figure("metrics", (18, 6))
ax = plt.subplot(1, 3, 1)
plt.ylim([0,1])
plt.title("Mean Dice")
plt.xlabel("epoch")
plt.plot(self.metric_logs.index, self.metric_logs.MeanDice)
ax = plt.subplot(1, 3, 2)
plt.title("Mean Hausdorff Distance")
plt.xlabel("epoch")
plt.plot(self.metric_logs.index, self.metric_logs.HausdorffDistance)
ax = plt.subplot(1, 3, 3)
plt.title("Mean Surface Distance")
plt.xlabel("epoch")
plt.plot(self.metric_logs.index, self.metric_logs.SurfaceDistance)
plt.savefig(os.path.join(self.run_id, 'report', 'metrics.png'), dpi = 150)
fig.clear()
plt.close()
with open(fn, 'a') as f:
f.write('## Metrics\n')
f.write('\n\n')
if boxplots:
fig = plt.figure("boxplots", (18, 6))
ax = plt.subplot(1, 3, 1)
plt.title("Dice")
plt.xlabel("class")
plt.boxplot(self.dice[[col for col in self.dice if col.startswith('class')]])
ax = plt.subplot(1, 3, 2)
plt.title("Hausdorff Distance")
plt.xlabel("class")
plt.boxplot(self.hausdorf[[col for col in self.hausdorf if col.startswith('class')]])
ax = plt.subplot(1, 3, 3)
plt.title("Surface Distance")
plt.xlabel("class")
plt.boxplot(self.surface[[col for col in self.surface if col.startswith('class')]])
plt.savefig(os.path.join(self.run_id, 'report', 'boxplots.png'),dpi = 150)
fig.clear()
plt.close()
with open(fn, 'a') as f:
f.write(f"## Individual metrics\n\n")
f.write(f"{self.mean_metrics.to_markdown()}\n\n")
f.write(f"\n\n")
if animation:
self.generate_gif()
with open(fn, 'a') as f:
f.write('## Visualization of progress\n')
f.write('\n\n')
def plot_loss(self, train_logs, metric_logs):
iteration = train_logs.iteration/sum(train_logs.epoch == 1)
fig = plt.figure("loss and lr", (12, 6))
y_max = max(metric_logs.eval_loss) + 0.5
if y_max > 3: y_max = 3
ax = plt.subplot(1, 2, 1)
plt.ylim([0,y_max])
plt.title("Epoch Average Loss")
plt.xlabel("epoch")
plt.plot(iteration, train_logs.loss)
plt.plot(metric_logs.index, metric_logs.eval_loss)
ax = plt.subplot(1, 2, 2)
ax.set_yscale('log')
plt.title("LR Schedule")
plt.xlabel("epoch")
plt.plot(iteration, train_logs.lr)
return fig
def get_arr_from_fig(self, fig, dpi=180):
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=dpi)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def get_slices(self, im, slices):
ims = torch.unbind(im[:, :, slices], -1) # extract n slices
ims = [i.transpose(0,1).flip(0) for i in ims] # rotate slices 90 degrees
if len(slices) > 4 and len(slices) % 2 == 0:
n = len(slices) // 2
ims1 = torch.cat(ims[0:n], 1)
ims2 = torch.cat(ims[n:], 1)
return torch.cat([ims1, ims2], 0)
else:
return torch.cat(ims, 1) # create tile
def plot_images(self, fns, slices, cmap='Greys_r', figsize=15, **kwargs):
ims = [torch.load(os.path.join(self.out_dir, 'preds', fn)).cpu().argmax(0) for fn in fns]
ims = [self.get_slices(im, slices) for im in ims]
ims = torch.cat(ims, 0)
plt.figure(figsize=(figsize,figsize))
plt.imshow(ims, cmap=cmap, **kwargs)
plt.axis('off')
def load_segmentation_image(self, fn):
im = torch.load(fn).cpu().unsqueeze(0)
im = torch.nn.functional.interpolate(im, (224, 224, 112))
im = im.argmax(1).squeeze()
im = self.get_slices(im, slices = (40, 48, 56, 74, 82, 90))
im = im/im.max() * 255
return im
def generate_gif(self):
with imageio.get_writer(
os.path.join(self.run_id,'report','progress.gif'),
mode='I',
fps = max(self.train_logs.epoch) // 10) as writer: # make gif 10 seconds
for epoch in tqdm.tqdm(list(self.train_logs.epoch.unique())):
seg_fn = os.path.join(self.out_dir, 'preds', f"pred_epoch_{epoch}.pt")
if os.path.exists(seg_fn): im = self.load_segmentation_image(seg_fn)
plt_train_logs = self.train_logs[self.train_logs.epoch <= epoch]
loss_plt = self.plot_loss(plt_train_logs, self.metric_logs[:epoch])
loss_fig = self.get_arr_from_fig(loss_plt)[:,:,0]
new_shape = im.shape[1], int(loss_fig.shape[0] / loss_fig.shape[1] * im.shape[1])
loss_fig = cv2.resize(loss_fig, (im.shape[1], im.shape[0]))
images = torch.cat([im, torch.tensor(loss_fig)], 0).numpy().astype(np.uint8)
writer.append_data(images)
loss_plt.clear()
plt.close() |