Spaces:
Runtime error
Runtime error
File size: 12,774 Bytes
3953219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import torch
import ipywidgets
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
from itertools import chain, islice
from ipywidgets import interactive, widgets
def _create_label(text:str)->ipywidgets.widgets.Label:
"Create label widget"
label = widgets.Label(
text,
layout=widgets.Layout(
width='100%',
display='flex',
justify_content="center"
)
)
return label
def _create_slider(
slider_min: int,
slider_max: int,
value: int,
step: int=1,
description:str ='',
continuous_update: bool=True,
readout: bool=False,
slider_type: str='IntSlider',
**kwargs)->ipywidgets.widgets:
"Create slider widget"
slider = getattr(widgets, slider_type)(
min=slider_min,
max=slider_max,
step=step,
value=value,
description=description,
continuous_update=continuous_update,
readout = readout,
layout=widgets.Layout(width='99%', min_width='200px'),
style={'description_width': 'initial'},
**kwargs
)
return slider
def _create_button(description:str)->ipywidgets.widgets.Button:
"Create button widget"
button = widgets.Button(
description=description,
layout=widgets.Layout(
width='95%',
margin='5px 5px'
)
)
return button
def _create_togglebutton(description: str,
value: int,
**kwargs)->ipywidgets.widgets.Button:
"Create toggle button widget"
button = widgets.ToggleButton(
description=description,
value = value,
layout=widgets.Layout(
width='95%',
margin='5px 5px'
), **kwargs
)
return button
class BasicViewer():
""" Base class for viewing TensorDicom3D objects.
Args:
x: main image object to view as rank 3 tensor
y: either a segmentation mask as as rank 3 tensor or a label as str.
prediction: a class predicton as str
description: description of the whole image
figsize: size of image, passed as plotting argument
cmap: colormap for the image
Returns:
Instance of BasicViewer
"""
def __init__(self, x:torch.Tensor, y=None, prediction:str=None, description: str=None,
figsize=(3, 3), cmap:str='bone'):
assert x.ndim == 3, f"x.ndim needs to be equal to but is {x.ndim}"
if isinstance(y, torch.Tensor):
assert x.shape == y.shape, f"Shapes of x {x.shape} and y {y.shape} do not match"
self.x=x
self.y=y
self.prediction=prediction
self.description=description
self.figsize=figsize
self.cmap=cmap
self.with_mask = isinstance(y, torch.Tensor)
self.slice_range = (1, len(x)) # len(x) == im.shape[0]
def _plot_slice(self, im_slice, with_mask, px_range):
"Plot slice of image"
fig, ax = plt.subplots(1, 1, figsize=self.figsize)
ax.imshow(self.x[im_slice-1, :, :].clip(*px_range), cmap=self.cmap)
if isinstance(self.y, (torch.Tensor)) and with_mask:
ax.imshow(self.y[im_slice-1, :, :], cmap='jet', alpha = 0.25)
plt.axis('off')
ax.set_xticks([])
ax.set_yticks([])
plt.show()
def _create_image_box(self, figsize):
"Create widget items, order them in item_box and generate view box"
items = []
if self.description: plot_description = _create_label(self.description)
if isinstance(self.y, str):
label = f'{self.y} | {self.prediction}' if self.prediction else self.y
if self.prediction:
font_color = 'green' if self.y == self.prediction else 'red'
y_label = _create_label(r'\(\color{' + font_color + '} {' + label + '}\)')
else:
y_label = _create_label(label)
else: y_label = _create_label(' ')
slice_slider = _create_slider(
slider_min = min(self.slice_range),
slider_max = max(self.slice_range),
value = max(self.slice_range)//2,
readout = True)
toggle_mask_button = _create_togglebutton('Show Mask', True)
range_slider = _create_slider(
slider_min = self.x.min().numpy(),
slider_max = self.x.max().numpy(),
value = [self.x.min().numpy(), self.x.max().numpy()],
slider_type = 'FloatRangeSlider' if torch.is_floating_point(self.x) else 'IntRandSlider',
step = 0.01 if torch.is_floating_point(self.x) else 1,
readout=True)
image_output = widgets.interactive_output(
f = self._plot_slice,
controls = {'im_slice': slice_slider,
'with_mask': toggle_mask_button,
'px_range': range_slider})
image_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
image_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
if self.description: items.append(plot_description)
items.append(y_label)
items.append(range_slider)
items.append(image_output)
if isinstance(self.y, torch.Tensor):
slice_slider = widgets.HBox([slice_slider, toggle_mask_button])
items.append(slice_slider)
image_box=widgets.VBox(
items,
layout = widgets.Layout(
border = 'none',
margin = '10px 5px 0px 0px',
padding = '5px'))
return image_box
def _generate_views(self):
image_box = self._create_image_box(self.figsize)
self.box = widgets.HBox(children=[image_box])
@property
def image_box(self):
return self._create_image_box(self.figsize)
def show(self):
self._generate_views()
plt.style.use('default')
display(self.box)
class DicomExplorer(BasicViewer):
""" DICOM viewer for basic image analysis inside iPython notebooks.
Can display a single 3D volume together with a segmentation mask, a histogram
of voxel/pixel values and some summary statistics.
Allows simple windowing by clipping the pixel/voxel values to a region, which
can be manually specified.
"""
vbox_layout = widgets.Layout(
margin = '10px 5px 5px 5px',
padding = '5px',
display='flex',
flex_flow='column',
align_items='center',
min_width = '250px')
def _plot_hist(self, px_range):
x = self.x.numpy().flatten()
fig, ax = plt.subplots(figsize=self.figsize)
N, bins, patches = plt.hist(x, 100, color='grey')
lwr = int(px_range[0] * 100/max(x))
upr = int(np.ceil(px_range[1] * 100/max(x)))
for i in range(0,lwr):
patches[i].set_facecolor('grey' if lwr > 0 else 'darkblue')
for i in range(lwr, upr):
patches[i].set_facecolor('darkblue')
for i in range(upr,100):
patches[i].set_facecolor('grey' if upr < 100 else 'darkblue')
plt.show()
def _image_summary(self, px_range):
x = self.x.clip(*px_range)
diffs = x - x.mean()
var = torch.mean(torch.pow(diffs, 2.0))
std = torch.pow(var, 0.5)
zscores = diffs / std
skews = torch.mean(torch.pow(zscores, 3.0))
kurt = torch.mean(torch.pow(zscores, 4.0)) - 3.0
table = f'Statistics:\n' + \
f' Mean px value: {x.mean()} \n' + \
f' Std of px values: {x.std()} \n' + \
f' Min px value: {x.min()} \n' + \
f' Max px value: {x.max()} \n' + \
f' Median px value: {x.median()} \n' + \
f' Skewness: {skews} \n' + \
f' Kurtosis: {kurt} \n\n' + \
f'Tensor properties \n' + \
f' Tensor shape: {tuple(x.shape)}\n' + \
f' Tensor dtype: {x.dtype}'
print(table)
def _generate_views(self):
slice_slider = _create_slider(
slider_min = min(self.slice_range),
slider_max = max(self.slice_range),
value = max(self.slice_range)//2,
readout = True)
toggle_mask_button = _create_togglebutton('Show Mask', True)
range_slider = _create_slider(
slider_min = self.x.min().numpy(),
slider_max = self.x.max().numpy(),
value = [self.x.min().numpy(), self.x.max().numpy()],
continuous_update=False,
slider_type = 'FloatRangeSlider' if torch.is_floating_point(self.x) else 'IntRandSlider',
step = 0.01 if torch.is_floating_point(self.x) else 1)
image_output = widgets.interactive_output(
f = self._plot_slice,
controls = {'im_slice': slice_slider,
'with_mask': toggle_mask_button,
'px_range': range_slider})
image_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
image_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
if isinstance(self.y, torch.Tensor):
slice_slider = widgets.HBox([slice_slider, toggle_mask_button])
hist_output = widgets.interactive_output(
f = self._plot_hist,
controls = {'px_range': range_slider})
hist_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
hist_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
toggle_mask_button = _create_togglebutton('Show Mask', True)
table_output = widgets.interactive_output(
f = self._image_summary,
controls = {'px_range': range_slider})
table_box = widgets.VBox([table_output], layout=self.vbox_layout)
hist_box = widgets.VBox(
[hist_output, range_slider],
layout=self.vbox_layout)
image_box = widgets.VBox(
[image_output, slice_slider],
layout=self.vbox_layout)
self.box = widgets.HBox(
[image_box, hist_box, table_box],
layout = widgets.Layout(
border = 'solid 1px lightgrey',
margin = '10px 5px 0px 0px',
padding = '5px',
width = f'{self.figsize[1]*2 + 3}in'))
class ListViewer(object):
""" Display multipple images with their masks or labels/predictions.
Arguments:
x (tuple, list): Tensor objects to view
y (tuple, list): Tensor objects (in case of segmentation task) or class labels as string.
predictions (str): Class predictions
cmap: colormap for display of `x`
max_n: maximum number of items to display
"""
def __init__(self, x:(list, tuple), y=None, prediction:str=None, description: str=None,
figsize=(4, 4), cmap:str='bone', max_n = 9):
self.slice_range = (1, len(x))
x = x[0:max_n]
if y: y = y[0:max_n]
self.x=x
self.y=y
self.prediction=prediction
self.description=description
self.figsize=figsize
self.cmap=cmap
self.max_n=max_n
def _generate_views(self):
n_images = len(self.x)
image_grid, image_list = [], []
for i in range(0, n_images):
image = self.x[i]
mask = self.y[i] if isinstance(self.y, list) else None
pred = self.prediction[i] if self.prediction else None
image_list.append(
BasicViewer(
x = image,
y = mask,
prediction = pred,
figsize = self.figsize,
cmap = self.cmap)
.image_box)
if (i+1) % np.ceil(np.sqrt(n_images)) == 0 or i == n_images - 1:
image_grid.append(widgets.HBox(image_list))
image_list = []
self.box = widgets.VBox(children=image_grid)
def show(self):
self._generate_views()
plt.style.use('default')
display(self.box) |