try
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
import torch
|
2 |
from unsloth import FastLanguageModel
|
3 |
|
4 |
-
#
|
5 |
-
device = "
|
6 |
|
7 |
-
# Load the base model
|
8 |
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
9 |
base_model, tokenizer = FastLanguageModel.from_pretrained(
|
10 |
model_name=base_model_name,
|
11 |
max_seq_length=2048,
|
12 |
-
dtype=
|
13 |
-
load_in_4bit=False
|
14 |
)
|
15 |
base_model.to(device)
|
16 |
|
17 |
-
# Apply LoRA adapters
|
18 |
from peft import PeftModel
|
19 |
|
20 |
lora_model_name = "oskaralf/lora_model" # Replace with your LoRA model path
|
21 |
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
22 |
model.to(device)
|
23 |
|
24 |
-
# Prepare for inference
|
25 |
FastLanguageModel.for_inference(model)
|
26 |
|
27 |
# Gradio interface
|
|
|
1 |
import torch
|
2 |
from unsloth import FastLanguageModel
|
3 |
|
4 |
+
# Force CPU mode
|
5 |
+
device = "cpu"
|
6 |
|
7 |
+
# Load the base model in CPU mode
|
8 |
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
9 |
base_model, tokenizer = FastLanguageModel.from_pretrained(
|
10 |
model_name=base_model_name,
|
11 |
max_seq_length=2048,
|
12 |
+
dtype="float32", # Use float32 for CPU
|
13 |
+
load_in_4bit=False # Disable 4-bit quantization for CPU
|
14 |
)
|
15 |
base_model.to(device)
|
16 |
|
17 |
+
# Apply LoRA adapters in CPU mode
|
18 |
from peft import PeftModel
|
19 |
|
20 |
lora_model_name = "oskaralf/lora_model" # Replace with your LoRA model path
|
21 |
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
22 |
model.to(device)
|
23 |
|
24 |
+
# Prepare for inference in CPU mode
|
25 |
FastLanguageModel.for_inference(model)
|
26 |
|
27 |
# Gradio interface
|