Spaces:
Sleeping
Sleeping
File size: 1,393 Bytes
7717d1f 158e1da 7717d1f 158e1da 7717d1f 8ef4b97 7717d1f 8ef4b97 7717d1f 8ef4b97 7717d1f 8ef4b97 158e1da 7307f38 158e1da b3d4a2e 7717d1f 0c8a9de b0e73a2 7717d1f 28cebc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from huggingface_hub import from_pretrained_fastai
from fastai.text.all import *
import gradio as gr
# Cargamos el learner
learner = from_pretrained_fastai('osrojo/Emotion')
# Definimos las etiquetas de nuestro modelo
labels = ['0','1','2','3','4','5']
example1 = "I started crying when I saw that little cat standing in the middle of the forest. It reminded me of my poor kitten."
example2 = "I can't wait to see Coldplay's concert next week. It's gonna be great!"
example3 = "The moment I finished reading a Brief History of Time, I knew that my passion would be physics."
example4 = "The fact that I needed to create four Gmail accounts in order to finish this goddammn notebook is quite irritating."
example5 = "i feel agitated with myself that i did not foresee her frustrations earlier leading to the ending of our relationship"
example6 = "i feel like they bring the characters to life completely and I'm always kind of surprised what the actors do do together."
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(text):
pred,pred_idx, probs = learner.predict(text)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.Textbox(), outputs=gr.Label(),examples=[example1,example2,example3,example4,example5,example6]).launch(share=False) |