Spaces:
Runtime error
Runtime error
File size: 27,610 Bytes
efbd782 f0b4901 efbd782 752b92d 79487e0 752b92d 6f4eb18 da54960 204444b da54960 204444b efbd782 ed8e6ec efbd782 ed8e6ec efbd782 ed8e6ec b00c130 a580e3c efbd782 820baa3 efbd782 bb83f2e efbd782 da54960 efbd782 d4ba7fb efbd782 5bf9189 efbd782 5bf9189 efbd782 f0b4901 20dbc5f 5bf9189 4738657 f0b4901 4329d6f efbd782 f0b4901 4b6b8fe efbd782 4b6b8fe efbd782 4b6b8fe efbd782 f0b4901 efbd782 4b6b8fe efbd782 4329d6f efbd782 4b6b8fe efbd782 4329d6f efbd782 f0b4901 efbd782 4329d6f efbd782 820baa3 f0b4901 efbd782 820baa3 4329d6f efbd782 f0b4901 efbd782 d4e36cb efbd782 f0b4901 efbd782 204444b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
"""Requires gradio==4.27.0"""
import io
import os
import json
import time
import datetime
import numpy as np
from uuid import uuid4
from PIL import Image
from math import radians, sin, cos, sqrt, asin, exp
from os.path import join
from collections import defaultdict
from itertools import tee
import matplotlib.style as mplstyle
mplstyle.use(['fast'])
import pandas as pd
import gradio as gr
import reverse_geocoder as rg
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
from gradio_folium import Folium
from geographiclib.geodesic import Geodesic
from folium import Map, Element, LatLngPopup, Marker, PolyLine, FeatureGroup
from folium.map import LayerControl
from folium.plugins import BeautifyIcon
from huggingface_hub import CommitScheduler
MPL = False
IMAGE_FOLDER = './images'
CSV_FILE = './select.csv'
BASE_LOCATION = [0, 23]
RULES = """<h1 style="margin-bottom: 0.5em">OSV-5M (plonk)</h1>
<center style="margin-bottom: 1em; margin-top: 1em"><img width="256" alt="Rotating globe" src="https://upload.wikimedia.org/wikipedia/commons/6/6b/Rotating_globe.gif"></center>
<h2 style="margin-top: 0.5em"> Instructions </h2>
<h3 style="margin-bottom: 0.5em"> Click at the location 🗺️ (left) where you think the image 🖼️ (right) was captured!<br>Click "Select" to finalize your selection and then "Next" to move to the next image.</h3>
<h2> AI Competitors </h2>
<h3 style="margin-bottom: 0.5em"> You will compete against two AIs: <b>Plonk-AI</b> (our best model) and Baseline-AI (a simpler approach).<br> These AIs have not been trained on any of the images you will see; in fact, they haven't seen anything within a <b>1km radius</b> of them.<br> Like you, the AIs will need to pick up on geographic clues to pinpoint the locations of the images.</h3>
<h2> Geoscore </h2>
<h3> The geoscore is calculated based on how close each guess is to the true location as in Geoguessr, with a maximum of <b>5000 points:</b>
<center style="margin-bottom: 0em; margin-top: 1em"><img src="https://latex.codecogs.com/svg.image?g(d)=5000\exp\left(\\frac{-d}{1492.7}\\right)"></img></center>
"""
css = """
@font-face {
font-family: custom;
src: url("/file=custom.ttf");
}
h1 {
text-align: center;
display:block;
font-family: custom;
font-size: 3.2em;
}
img {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
font-family: custom;
font-size: 2.2em;
}
h3 {
text-align: center;
display:block;
font-family: custom;
font-weight: normal;
font-size: 1.5em;
}
.MathJax {
font-size: 1.5em;
}
"""
space_js = """
<script src="https://cdn.jsdelivr.net/npm/@rapideditor/[email protected]/dist/country-coder.iife.min.js"></script>
<script>
function shortcuts(e) {
var event = document.all ? window.event : e;
switch (e.target.tagName.toLowerCase()) {
case "input":
case "textarea":
break;
default:
if (e.key.toLowerCase() == " " && !e.shiftKey) {
document.getElementById("latlon_btn").click();
}
}
}
function shortcuts_exit(e) {
var event = document.all ? window.event : e;
switch (e.target.tagName.toLowerCase()) {
case "input":
case "textarea":
break;
default:
if (e.key.toLowerCase() == "e" && e.shiftKey) {
document.getElementById("exit_btn").click();
}
}
}
document.addEventListener('keypress', shortcuts, false);
document.addEventListener('keypress', shortcuts_exit, false);
</script>
"""
def sample_points_along_geodesic(start_lat, start_lon, end_lat, end_lon, min_length_km=2000, segment_length_km=5000, num_samples=None):
geod = Geodesic.WGS84
distance = geod.Inverse(start_lat, start_lon, end_lat, end_lon)['s12']
if distance < min_length_km:
return [(start_lat, start_lon), (end_lat, end_lon)]
if num_samples is None:
num_samples = min(int(distance / segment_length_km) + 1, 1000)
point_distance = np.linspace(0, distance, num_samples)
points = []
for pd in point_distance:
line = geod.InverseLine(start_lat, start_lon, end_lat, end_lon)
g_point = line.Position(pd, Geodesic.STANDARD | Geodesic.LONG_UNROLL)
points.append((g_point['lat2'], g_point['lon2']))
return points
class GeodesicPolyLine(PolyLine):
def __init__(self, locations, min_length_km=2000, segment_length_km=1000, num_samples=None, **kwargs):
kwargs1 = dict(min_length_km=min_length_km, segment_length_km=segment_length_km, num_samples=num_samples)
assert len(locations) == 2, "A polyline must have at least two locations"
start, end = locations
geodesic_locs = sample_points_along_geodesic(start[0], start[1], end[0], end[1], **kwargs1)
super().__init__(geodesic_locs, **kwargs)
def inject_javascript(folium_map):
js = """
document.addEventListener('DOMContentLoaded', function() {
map_name_1.on('click', function(e) {
window.state_data = e.latlng
});
});
"""
folium_map.get_root().html.add_child(Element(f'<script>{js}</script>'))
def empty_map():
return Map(location=BASE_LOCATION, zoom_start=1)
def make_map_(name="map_name", id="1"):
map = Map(location=BASE_LOCATION, zoom_start=1)
map._name, map._id = name, id
LatLngPopup().add_to(map)
inject_javascript(map)
return map
def make_map(name="map_name", id="1", height=500):
map = make_map_(name, id)
fol = Folium(value=map, height=height, visible=False, elem_id='map-fol')
return fol
def map_js():
return """
(a, textBox) => {
const iframeMap = document.getElementById('map-fol').getElementsByTagName('iframe')[0];
const latlng = iframeMap.contentWindow.state_data;
if (!latlng) { return [-1, -1]; }
textBox = `${latlng.lat},${latlng.lng}`;
document.getElementById('coords-tbox').getElementsByTagName('textarea')[0].value = textBox;
var a = countryCoder.iso1A2Code([latlng.lng, latlng.lat]);
if (!a) { a = 'nan'; }
return [a, `${latlng.lat},${latlng.lng},${a}`];
}
"""
def haversine(lat1, lon1, lat2, lon2):
if (lat1 is None) or (lon1 is None) or (lat2 is None) or (lon2 is None):
return 0
R = 6371 # radius of the earth in km
dLat = radians(lat2 - lat1)
dLon = radians(lon2 - lon1)
a = (
sin(dLat / 2.0) ** 2
+ cos(radians(lat1)) * cos(radians(lat2)) * sin(dLon / 2.0) ** 2
)
c = 2 * asin(sqrt(a))
distance = R * c
return distance
def geoscore(d):
return 5000 * exp(-d / 1492.7)
def compute_scores(csv_file):
df = pd.read_csv(csv_file)
if 'accuracy_country' not in df.columns:
print('Computing scores... (this may take a while)')
geocoders = rg.search([(row.true_lat, row.true_lon) for row in df.itertuples(name='Pandas')])
df['city'] = [geocoder['name'] for geocoder in geocoders]
df['area'] = [geocoder['admin2'] for geocoder in geocoders]
df['region'] = [geocoder['admin1'] for geocoder in geocoders]
df['country'] = [geocoder['cc'] for geocoder in geocoders]
df['city_val'] = df['city'].apply(lambda x: 0 if pd.isna(x) or x == 'nan' else 1)
df['area_val'] = df['area'].apply(lambda x: 0 if pd.isna(x) or x == 'nan' else 1)
df['region_val'] = df['region'].apply(lambda x: 0 if pd.isna(x) or x == 'nan' else 1)
df['country_val'] = df['country'].apply(lambda x: 0 if pd.isna(x) or x == 'nan' else 1)
df['distance'] = df.apply(lambda row: haversine(row['true_lat'], row['true_lon'], row['pred_lat'], row['pred_lon']), axis=1)
df['score'] = df.apply(lambda row: geoscore(row['distance']), axis=1)
df['distance_base'] = df.apply(lambda row: haversine(row['true_lat'], row['true_lon'], row['pred_lat_base'], row['pred_lon_base']), axis=1)
df['score_base'] = df.apply(lambda row: geoscore(row['distance_base']), axis=1)
print('Computing geocoding accuracy (base)...')
geocoders_base = rg.search([(row.pred_lat_base, row.pred_lon_base) for row in df.itertuples(name='Pandas')])
df['pred_city_base'] = [geocoder['name'] for geocoder in geocoders_base]
df['pred_area_base'] = [geocoder['admin2'] for geocoder in geocoders_base]
df['pred_region_base'] = [geocoder['admin1'] for geocoder in geocoders_base]
df['pred_country_base'] = [geocoder['cc'] for geocoder in geocoders_base]
df['city_hit_base'] = [df['city'].iloc[i] != 'nan' and df['pred_city_base'].iloc[i] == df['city'].iloc[i] for i in range(len(df))]
df['area_hit_base'] = [df['area'].iloc[i] != 'nan' and df['pred_area_base'].iloc[i] == df['area'].iloc[i] for i in range(len(df))]
df['region_hit_base'] = [df['region'].iloc[i] != 'nan' and df['pred_region_base'].iloc[i] == df['region'].iloc[i] for i in range(len(df))]
df['country_hit_base'] = [df['country'].iloc[i] != 'nan' and df['pred_country_base'].iloc[i] == df['country'].iloc[i] for i in range(len(df))]
df['accuracy_city_base'] = [(0 if df['city_val'].iloc[:i].sum() == 0 else df['city_hit_base'].iloc[:i].sum()/df['city_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_area_base'] = [(0 if df['area_val'].iloc[:i].sum() == 0 else df['area_hit_base'].iloc[:i].sum()/df['area_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_region_base'] = [(0 if df['region_val'].iloc[:i].sum() == 0 else df['region_hit_base'].iloc[:i].sum()/df['region_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_country_base'] = [(0 if df['country_val'].iloc[:i].sum() == 0 else df['country_hit_base'].iloc[:i].sum()/df['country_val'].iloc[:i].sum())*100 for i in range(len(df))]
print('Computing geocoding accuracy (best)...')
geocoders = rg.search([(row.pred_lat, row.pred_lon) for row in df.itertuples()])
df['pred_city'] = [geocoder['name'] for geocoder in geocoders]
df['pred_area'] = [geocoder['admin2'] for geocoder in geocoders]
df['pred_region'] = [geocoder['admin1'] for geocoder in geocoders]
df['pred_country'] = [geocoder['cc'] for geocoder in geocoders]
df['city_hit'] = [df['city'].iloc[i] != 'nan' and df['pred_city'].iloc[i] == df['city'].iloc[i] for i in range(len(df))]
df['area_hit'] = [df['area'].iloc[i] != 'nan' and df['pred_area'].iloc[i] == df['area'].iloc[i] for i in range(len(df))]
df['region_hit'] = [df['region'].iloc[i] != 'nan' and df['pred_region'].iloc[i] == df['region'].iloc[i] for i in range(len(df))]
df['country_hit'] = [df['country'].iloc[i] != 'nan' and df['pred_country'].iloc[i] == df['country'].iloc[i] for i in range(len(df))]
df['accuracy_city'] = [(0 if df['city_val'].iloc[:i].sum() == 0 else df['city_hit'].iloc[:i].sum()/df['city_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_area'] = [(0 if df['area_val'].iloc[:i].sum() == 0 else df['area_hit'].iloc[:i].sum()/df['area_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_region'] = [(0 if df['region_val'].iloc[:i].sum() == 0 else df['region_hit'].iloc[:i].sum()/df['region_val'].iloc[:i].sum())*100 for i in range(len(df))]
df['accuracy_country'] = [(0 if df['country_val'].iloc[:i].sum() == 0 else df['country_hit'].iloc[:i].sum()/df['country_val'].iloc[:i].sum())*100 for i in range(len(df))]
df.to_csv(csv_file, index=False)
if __name__ == "__main__":
JSON_DATASET_DIR = 'results'
scheduler = CommitScheduler(
repo_id="osv5m/humeval",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo=f"raw_data",
every=2
)
class Engine(object):
def __init__(self, image_folder, csv_file, mpl=True):
self.image_folder = image_folder
self.csv_file = csv_file
self.load_images_and_coordinates(csv_file)
# Initialize the score and distance lists
self.index = 0
self.stats = defaultdict(list)
# Create the figure and canvas only once
self.fig = plt.Figure(figsize=(10, 6))
self.mpl = mpl
if mpl:
self.ax = self.fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
self.tag = str(uuid4()) + datetime.datetime.now().strftime("__%Y_%m_%d_%H_%M_%S")
def load_images_and_coordinates(self, csv_file):
# Load the CSV
df = pd.read_csv(csv_file)
# Put image with id 732681614433401 on the top and then all the rest below
df['id'] = df['id'].astype(str)
df = pd.concat([df[df['id'] == '495204901603170'], df[df['id'] != '495204901603170']])
df = pd.concat([df[df['id'] == '732681614433401'], df[df['id'] != '732681614433401']])
# Get the image filenames and their coordinates
self.images = [os.path.join(self.image_folder, f"{img_path}.jpg") for img_path in df['id'].tolist()[:]]
self.coordinates = df[['true_lon', 'true_lat']].values.tolist()[:]
# compute the admins
self.df = df
self.admins = self.df[['city', 'area', 'region', 'country']].values.tolist()[:]
self.preds = self.df[['pred_lon', 'pred_lat']].values.tolist()[:]
def isfinal(self):
return self.index == len(self.images)-1
def load_image(self):
if self.index > len(self.images)-1:
self.master.update_idletasks()
self.finish()
self.set_clock()
return self.images[self.index], '### ' + str(self.index + 1) + '/' + str(len(self.images))
def get_figure(self):
if self.mpl:
img_buf = io.BytesIO()
self.fig.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
pil = Image.open(img_buf)
self.width, self.height = pil.size
return pil
else:
pred_lon, pred_lat, true_lon, true_lat, click_lon, click_lat = self.info
map = Map(location=BASE_LOCATION, zoom_start=1)
map._name, map._id = 'visu', '1'
feature_group = FeatureGroup(name='Ground Truth')
Marker(
location=[true_lat, true_lon],
popup="True location",
icon_color='red',
).add_to(feature_group)
map.add_child(feature_group)
icon_square = BeautifyIcon(
icon_shape='rectangle-dot',
border_color='green',
border_width=5,
)
feature_group_best = FeatureGroup(name='Best Model')
Marker(
location=[pred_lat, pred_lon],
popup="Best Model",
icon=icon_square,
).add_to(feature_group_best)
GeodesicPolyLine([[true_lat, true_lon], [pred_lat, pred_lon]], color='green').add_to(feature_group_best)
map.add_child(feature_group_best)
icon_circle = BeautifyIcon(
icon_shape='circle-dot',
border_color='blue',
border_width=5,
)
feature_group_user = FeatureGroup(name='User')
Marker(
location=[click_lat, click_lon],
popup="Human",
icon=icon_circle,
).add_to(feature_group_user)
GeodesicPolyLine([[true_lat, true_lon], [click_lat, click_lon]], color='blue').add_to(feature_group_user)
map.add_child(feature_group_user)
map.add_child(LayerControl())
return map
def set_clock(self):
self.time = time.time()
def get_clock(self):
return time.time() - self.time
def mpl_style(self, pred_lon, pred_lat, true_lon, true_lat, click_lon, click_lat):
if self.mpl:
self.ax.clear()
self.ax.set_global()
self.ax.stock_img()
self.ax.add_feature(cfeature.COASTLINE)
self.ax.add_feature(cfeature.BORDERS, linestyle=':')
self.ax.plot(pred_lon, pred_lat, 'gv', transform=ccrs.Geodetic(), label='model')
self.ax.plot([true_lon, pred_lon], [true_lat, pred_lat], color='green', linewidth=1, transform=ccrs.Geodetic())
self.ax.plot(click_lon, click_lat, 'bo', transform=ccrs.Geodetic(), label='user')
self.ax.plot([true_lon, click_lon], [true_lat, click_lat], color='blue', linewidth=1, transform=ccrs.Geodetic())
self.ax.plot(true_lon, true_lat, 'rx', transform=ccrs.Geodetic(), label='g.t.')
legend = self.ax.legend(ncol=3, loc='lower center') #, bbox_to_anchor=(0.5, -0.15), borderaxespad=0.
legend.get_frame().set_alpha(None)
self.fig.canvas.draw()
else:
self.info = [pred_lon, pred_lat, true_lon, true_lat, click_lon, click_lat]
def click(self, click_lon, click_lat, country):
time_elapsed = self.get_clock()
self.stats['times'].append(time_elapsed)
# convert click_lon, click_lat to lat, lon (given that you have the borders of the image)
# click_lon and click_lat is in pixels
# lon and lat is in degrees
self.stats['clicked_locations'].append((click_lat, click_lon))
true_lon, true_lat = self.coordinates[self.index]
pred_lon, pred_lat = self.preds[self.index]
self.mpl_style(pred_lon, pred_lat, true_lon, true_lat, click_lon, click_lat)
distance = haversine(true_lat, true_lon, click_lat, click_lon)
score = geoscore(distance)
self.stats['scores'].append(score)
self.stats['distances'].append(distance)
self.stats['country'].append(int(self.admins[self.index][3] != 'nan' and country == self.admins[self.index][3]))
df = pd.DataFrame([self.get_model_average(who) for who in ['user', 'best', 'base']], columns=['who', 'GeoScore', 'Distance', 'Accuracy (country)']).round(2)
result_text = (
f"### <span style='color:blue'>GeoScore: %s, Distance: %s km <b style='color:blue'>(You)</b></span></br><span style='color:green'>GeoScore: %s, Distance: %s km <b style='color:green'>(Plonk-AI)</b></span>" % (
round(score, 2),
round(distance, 2),
round(self.df['score'].iloc[self.index], 2),
round(self.df['distance'].iloc[self.index], 2)
)
)
# You: } \green{OSV-Bot: GeoScore: XX, distance: XX
self.cache(self.index+1, score, distance, (click_lat, click_lon), time_elapsed)
return self.get_figure(), result_text, df
def next_image(self):
# Go to the next image
self.index += 1
return self.load_image()
def get_model_average(self, which, all=False, final=False):
aux, i = [], self.index
if which == 'user':
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
avg_country_accuracy = (0 if self.df['country_val'].iloc[:i+1].sum() == 0 else sum(self.stats['country'])/self.df['country_val'].iloc[:i+1].sum())*100
if all:
avg_city_accuracy = (0 if self.df['city_val'].iloc[:i+1].sum() == 0 else sum(self.stats['city'])/self.df['city_val'].iloc[:i+1].sum())*100
avg_area_accuracy = (0 if self.df['area_val'].iloc[:i+1].sum() == 0 else sum(self.stats['area'])/self.df['area_val'].iloc[:i+1].sum())*100
avg_region_accuracy = (0 if self.df['region_val'].iloc[:i+1].sum() == 0 else sum(self.stats['region'])/self.df['region_val'].iloc[:i+1].sum())*100
aux = [avg_city_accuracy, avg_area_accuracy, avg_region_accuracy]
which = 'You'
elif which == 'base':
avg_score = np.mean(self.df[['score_base']].iloc[:i+1])
avg_distance = np.mean(self.df[['distance_base']].iloc[:i+1])
avg_country_accuracy = self.df['accuracy_country_base'].iloc[i]
if all:
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
which = 'Baseline-AI'
elif which == 'best':
avg_score = np.mean(self.df[['score']].iloc[:i+1])
avg_distance = np.mean(self.df[['distance']].iloc[:i+1])
avg_country_accuracy = self.df['accuracy_country'].iloc[i]
if all:
aux = [self.df['accuracy_city_base'].iloc[i], self.df['accuracy_area_base'].iloc[i], self.df['accuracy_region_base'].iloc[i]]
which = 'Plonk-AI'
return [which, avg_score, avg_distance, avg_country_accuracy] + aux
def update_average_display(self):
# Calculate the average values
avg_score = sum(self.stats['scores']) / len(self.stats['scores']) if self.stats['scores'] else 0
avg_distance = sum(self.stats['distances']) / len(self.stats['distances']) if self.stats['distances'] else 0
# Update the text box
return f"GeoScore: {avg_score:.0f}, Distance: {avg_distance:.0f} km"
def finish(self):
clicks = rg.search(self.stats['clicked_locations'])
self.stats['city'] = [(int(self.admins[self.index][0] != 'nan' and click['name'] == self.admins[self.index][0])) for click in clicks]
self.stats['area'] = [(int(self.admins[self.index][1] != 'nan' and click['admin2'] == self.admins[self.index][1])) for click in clicks]
self.stats['region'] = [(int(self.admins[self.index][2] != 'nan' and click['admin1'] == self.admins[self.index][2])) for click in clicks]
df = pd.DataFrame([self.get_model_average(who, True, True) for who in ['user', 'best', 'base']], columns=['who', 'GeoScore', 'Distance', 'Accuracy (country)', 'Accuracy (city)', 'Accuracy (area)', 'Accuracy (region)'])
return df
# Function to save the game state
def cache(self, index, score, distance, location, time_elapsed):
with scheduler.lock:
os.makedirs(join(JSON_DATASET_DIR, self.tag), exist_ok=True)
with open(join(JSON_DATASET_DIR, self.tag, f'{index}.json'), 'w') as f:
json.dump({"lat": location[0], "lon": location[1], "time": time_elapsed, "user": self.tag}, f)
f.write('\n')
if __name__ == "__main__":
# login with the key from secret
if 'csv' in os.environ:
csv_str = os.environ['csv']
with open(CSV_FILE, 'w') as f:
f.write(csv_str)
compute_scores(CSV_FILE)
import gradio as gr
def click(state, coords):
if coords == '-1' or state['clicked']:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
lat, lon, country = coords.split(',')
state['clicked'] = True
image, text, df = state['engine'].click(float(lon), float(lat), country)
df = df.sort_values(by='GeoScore', ascending=False)
kargs = {}
if not MPL:
kargs = {'value': empty_map()}
return gr.update(visible=False, **kargs), gr.update(value=image, visible=True), gr.update(value=text, visible=True), gr.update(value=df, visible=True), gr.update(visible=False), gr.update(visible=True),
def exit_(state):
if state['engine'].index > 0:
df = state['engine'].finish()
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value='', visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value=df, visible=True), gr.update(value="-1", visible=False), gr.update(value="<h1 style='margin-top: 4em;'> Your stats on OSV-5M🌍 </h1>", visible=True), gr.update(value="<h3 style='margin-top: 1em;'>Thanks for playing ❤️</h3>", visible=True), gr.update(visible=False)
else:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
def next_(state):
if state['clicked']:
if state['engine'].isfinal():
return exit_(state)
else:
image, text = state['engine'].next_image()
state['clicked'] = False
kargs = {}
if not MPL:
kargs = {'value': empty_map()}
return gr.update(value=make_map_(), visible=True), gr.update(visible=False, **kargs), gr.update(value=image), gr.update(value=text, visible=True), gr.update(value='', visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="-1"), gr.update(), gr.update(), gr.update(visible=True)
else:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
def start(state):
# create a unique random temporary name under CACHE_DIR
# generate random hex and make sure it doesn't exist under CACHE_DIR
state['engine'] = Engine(IMAGE_FOLDER, CSV_FILE, MPL)
state['clicked'] = False
image, text = state['engine'].load_image()
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(value=image, visible=True),
gr.update(value=text, visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(value="<h1>OSV-5M (plonk)</h1>"),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="-1"),
gr.update(visible=True),
)
with gr.Blocks(css=css, head=space_js) as demo:
state = gr.State({})
rules = gr.Markdown(RULES, visible=True)
exit_button = gr.Button("Exit", visible=False, elem_id='exit_btn')
start_button = gr.Button("Start", visible=True)
with gr.Row():
map_ = make_map(height=512)
if MPL:
results = gr.Image(label='Results', visible=False)
else:
results = Folium(height=512, visible=False)
image_ = gr.Image(label='Image', visible=False, height=512)
with gr.Row():
text = gr.Markdown("", visible=False)
text_count = gr.Markdown("", visible=False)
with gr.Row():
select_button = gr.Button("Select", elem_id='latlon_btn', visible=False)
next_button = gr.Button("Next", visible=False, elem_id='next')
perf = gr.Dataframe(value=None, visible=False, label='Average Performance (until now)')
text_end = gr.Markdown("", visible=False)
coords = gr.Textbox(value="-1", label="Latitude, Longitude", visible=False, elem_id='coords-tbox')
start_button.click(start, inputs=[state], outputs=[map_, results, image_, text_count, text, next_button, rules, state, start_button, coords, select_button])
select_button.click(click, inputs=[state, coords], outputs=[map_, results, text, perf, select_button, next_button], js=map_js())
next_button.click(next_, inputs=[state], outputs=[map_, results, image_, text_count, text, next_button, perf, coords, rules, text_end, select_button])
exit_button.click(exit_, inputs=[state], outputs=[map_, results, image_, text_count, text, next_button, perf, coords, rules, text_end, select_button])
demo.queue().launch(allowed_paths=["custom.ttf", "geoscore.gif"], debug=True)
|