Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,34 @@ import gradio as gr
|
|
2 |
from ultralytics import YOLO
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
-
import os
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
-
def perform(image):
|
9 |
-
"""Perform the task of detection"""
|
10 |
# Predict with the model
|
11 |
results = model(image, save=True) # predict on an image
|
|
|
12 |
# get the saved prediction
|
13 |
prediction_image = Image.open(os.path.join(results[0].save_dir, os.listdir(results[0].save_dir)[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# initialize the output list to save the bbox
|
15 |
outputs = []
|
|
|
16 |
# Access the results
|
17 |
for result in results[0]:
|
18 |
xywh = result.boxes.xyxy[0].numpy().tolist() # top-left-x, top-left-y, bottom-right-x, bottom-right-y
|
19 |
-
name = result.names[result.boxes.cls.item()]
|
20 |
confs = float(result.boxes.conf) # confidence score of each box
|
21 |
-
outputs.append({"xywh":xywh
|
22 |
-
|
23 |
-
return
|
|
|
24 |
|
25 |
def load_model(model_name: str = "yolo11n.pt"):
|
26 |
"""Model loading"""
|
@@ -29,7 +38,6 @@ def load_model(model_name: str = "yolo11n.pt"):
|
|
29 |
model = YOLO(model_name)
|
30 |
except Exception as e:
|
31 |
print(f"Error loading the model {e}")
|
32 |
-
return None
|
33 |
return model
|
34 |
|
35 |
# loading the model
|
@@ -39,7 +47,7 @@ model = load_model()
|
|
39 |
demo = gr.Interface(
|
40 |
fn=perform,
|
41 |
inputs=[gr.Image(type="pil")], # PIL Image format
|
42 |
-
outputs=[gr.Image(type="
|
43 |
title="Object Detection using YOLO",
|
44 |
description="Upload an image and get image with bbox in it",
|
45 |
examples=None # You can add example images here if needed
|
@@ -47,5 +55,4 @@ demo = gr.Interface(
|
|
47 |
|
48 |
# Launch the app
|
49 |
if __name__ == "__main__":
|
50 |
-
|
51 |
-
demo.launch()
|
|
|
2 |
from ultralytics import YOLO
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
from PIL import Image
|
8 |
|
9 |
+
def perform(image, task: str="detect"):
|
|
|
10 |
# Predict with the model
|
11 |
results = model(image, save=True) # predict on an image
|
12 |
+
|
13 |
# get the saved prediction
|
14 |
prediction_image = Image.open(os.path.join(results[0].save_dir, os.listdir(results[0].save_dir)[0]))
|
15 |
+
|
16 |
+
# Save the prediction image to a temporary file for public URL
|
17 |
+
temp_dir = tempfile.mkdtemp()
|
18 |
+
temp_path = os.path.join(temp_dir, "prediction.jpg")
|
19 |
+
prediction_image.save(temp_path)
|
20 |
+
|
21 |
# initialize the output list to save the bbox
|
22 |
outputs = []
|
23 |
+
|
24 |
# Access the results
|
25 |
for result in results[0]:
|
26 |
xywh = result.boxes.xyxy[0].numpy().tolist() # top-left-x, top-left-y, bottom-right-x, bottom-right-y
|
27 |
+
name = result.names[result.boxes.cls.item()] # classes
|
28 |
confs = float(result.boxes.conf) # confidence score of each box
|
29 |
+
outputs.append({"xywh": xywh, "conf": confs, "name": name})
|
30 |
+
|
31 |
+
# return the image path (for public URL) and the bbox
|
32 |
+
return temp_path, outputs
|
33 |
|
34 |
def load_model(model_name: str = "yolo11n.pt"):
|
35 |
"""Model loading"""
|
|
|
38 |
model = YOLO(model_name)
|
39 |
except Exception as e:
|
40 |
print(f"Error loading the model {e}")
|
|
|
41 |
return model
|
42 |
|
43 |
# loading the model
|
|
|
47 |
demo = gr.Interface(
|
48 |
fn=perform,
|
49 |
inputs=[gr.Image(type="pil")], # PIL Image format
|
50 |
+
outputs=[gr.Image(type="filepath"), gr.JSON()], # Changed to filepath for public URL
|
51 |
title="Object Detection using YOLO",
|
52 |
description="Upload an image and get image with bbox in it",
|
53 |
examples=None # You can add example images here if needed
|
|
|
55 |
|
56 |
# Launch the app
|
57 |
if __name__ == "__main__":
|
58 |
+
demo.launch() # Added share=True for public access
|
|