Spaces:
Runtime error
Runtime error
File size: 2,404 Bytes
3a0932b 005375d 3a0932b 47f5171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import numpy as np
import gradio as gr
from transformers import AutoTokenizer,AutoModelForSequenceClassification
from transformers import set_seed
from torch.utils.data import Dataset,DataLoader
import torch
import torch.nn as nn
import numpy as np
import warnings
warnings.filterwarnings('ignore')
set_seed(4)
device = "cpu"
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
def AMP(file):
test_sequences = file
max_len = 30
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt')
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320)
self.bn1 = nn.BatchNorm1d(256)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(64)
self.relu = nn.ReLU()
self.fc1 = nn.Linear(320,256)
self.fc2 = nn.Linear(256,128)
self.fc3 = nn.Linear(128,64)
self.output_layer = nn.Linear(64,2)
self.dropout = nn.Dropout(0)
def forward(self,x):
with torch.no_grad():
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device))
output_feature = self.dropout(bert_output["logits"])
output_feature = self.relu(self.bn1(self.fc1(output_feature)))
output_feature = self.relu(self.bn2(self.fc2(output_feature)))
output_feature = self.relu(self.bn3(self.fc3(output_feature)))
output_feature = self.output_layer(output_feature)
return torch.softmax(output_feature,dim=1)
model = MyModel()
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')))
model = model.to(device)
model.eval()
out_probability = []
with torch.no_grad():
predict = model(test_data)
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist())
test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
id2str = {0:"non-AMP", 1:"AMP"}
return id2str[test_argmax[0]], out_probability[0]
iface = gr.Interface(fn=AMP,
inputs="text",
outputs= ["text", "text"])
iface.launch() |