File size: 2,404 Bytes
3a0932b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005375d
3a0932b
 
 
 
 
 
 
 
 
 
 
 
 
47f5171
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import gradio as gr
from transformers import AutoTokenizer,AutoModelForSequenceClassification
from transformers import set_seed
from torch.utils.data import Dataset,DataLoader
import torch
import torch.nn as nn
import numpy as np
import warnings
warnings.filterwarnings('ignore')
set_seed(4)  
device = "cpu"
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

def AMP(file):
    test_sequences = file
    max_len = 30
    test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt')

    class MyModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320)
            self.bn1 = nn.BatchNorm1d(256)
            self.bn2 = nn.BatchNorm1d(128)
            self.bn3 = nn.BatchNorm1d(64)
            self.relu = nn.ReLU()
            self.fc1 = nn.Linear(320,256)
            self.fc2 = nn.Linear(256,128)
            self.fc3 = nn.Linear(128,64)
            self.output_layer = nn.Linear(64,2)
            self.dropout = nn.Dropout(0)
        def forward(self,x):
            with torch.no_grad():
                bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) 
            output_feature = self.dropout(bert_output["logits"])
            output_feature = self.relu(self.bn1(self.fc1(output_feature)))
            output_feature = self.relu(self.bn2(self.fc2(output_feature)))
            output_feature = self.relu(self.bn3(self.fc3(output_feature)))
            output_feature = self.output_layer(output_feature)
            return torch.softmax(output_feature,dim=1)
            
    model = MyModel()
    model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')))
    model = model.to(device)
    model.eval()
    out_probability = []
    with torch.no_grad():
        predict = model(test_data)
        out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist())
        test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
    id2str = {0:"non-AMP", 1:"AMP"}
    return id2str[test_argmax[0]], out_probability[0]

iface = gr.Interface(fn=AMP,
                     inputs="text", 
                    outputs= ["text", "text"])
iface.launch()