import numpy as np import gradio as gr from transformers import AutoTokenizer,AutoModelForSequenceClassification from transformers import set_seed from torch.utils.data import Dataset,DataLoader import torch import torch.nn as nn import numpy as np import warnings warnings.filterwarnings('ignore') set_seed(4) device = "cpu" model_checkpoint = "facebook/esm2_t6_8M_UR50D" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) def AMP(file): test_sequences = file max_len = 30 test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') class MyModel(nn.Module): def __init__(self): super().__init__() self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) self.bn1 = nn.BatchNorm1d(256) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(64) self.relu = nn.ReLU() self.fc1 = nn.Linear(320,256) self.fc2 = nn.Linear(256,128) self.fc3 = nn.Linear(128,64) self.output_layer = nn.Linear(64,2) self.dropout = nn.Dropout(0) def forward(self,x): with torch.no_grad(): bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) output_feature = self.dropout(bert_output["logits"]) output_feature = self.relu(self.bn1(self.fc1(output_feature))) output_feature = self.relu(self.bn2(self.fc2(output_feature))) output_feature = self.relu(self.bn3(self.fc3(output_feature))) output_feature = self.output_layer(output_feature) return torch.softmax(output_feature,dim=1) model = MyModel() model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False) model = model.to(device) model.eval() out_probability = [] with torch.no_grad(): predict = model(test_data) out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) test_argmax = np.argmax(predict.cpu(), axis=1).tolist() id2str = {0:"non-AMP", 1:"AMP"} return id2str[test_argmax[0]], out_probability[0] iface = gr.Interface(fn=AMP, inputs="text", outputs= ["text", "text"]) iface.launch()