Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import set_seed
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from collections import OrderedDict
|
8 |
+
import warnings
|
9 |
+
import random
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
warnings.filterwarnings('ignore')
|
13 |
+
set_seed(4)
|
14 |
+
device = "cpu"
|
15 |
+
model_checkpoint = "facebook/esm2_t12_35M_UR50D"
|
16 |
+
dropout = 0.1
|
17 |
+
|
18 |
+
def setup_seed(seed):
|
19 |
+
torch.manual_seed(seed)
|
20 |
+
torch.cuda.manual_seed_all(seed)
|
21 |
+
np.random.seed(seed)
|
22 |
+
random.seed(seed)
|
23 |
+
torch.backends.cudnn.deterministic = True
|
24 |
+
setup_seed(4)
|
25 |
+
|
26 |
+
class MyModel(nn.Module):
|
27 |
+
def __init__(self):
|
28 |
+
super().__init__()
|
29 |
+
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320)
|
30 |
+
self.bn1 = nn.BatchNorm1d(256)
|
31 |
+
self.bn2 = nn.BatchNorm1d(128)
|
32 |
+
self.bn3 = nn.BatchNorm1d(64)
|
33 |
+
self.relu = nn.ReLU()
|
34 |
+
self.fc1 = nn.Linear(320,256)
|
35 |
+
self.fc2 = nn.Linear(256,128)
|
36 |
+
self.fc3 = nn.Linear(128,64)
|
37 |
+
self.output_layer = nn.Linear(64,2)
|
38 |
+
self.dropout = nn.Dropout(dropout)
|
39 |
+
|
40 |
+
def forward(self,x):
|
41 |
+
with torch.no_grad():
|
42 |
+
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device))
|
43 |
+
output_feature = self.dropout(bert_output["logits"])
|
44 |
+
output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
|
45 |
+
output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
|
46 |
+
output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
|
47 |
+
output_feature = self.dropout(self.output_layer(output_feature))
|
48 |
+
return torch.softmax(output_feature,dim=1)
|
49 |
+
|
50 |
+
model = MyModel()
|
51 |
+
model.load_state_dict(torch.load("best_model.pth"))
|
52 |
+
model = model.to(device)
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
56 |
+
|
57 |
+
def pre(file):
|
58 |
+
test_sequences = file
|
59 |
+
max_len = 30
|
60 |
+
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt')
|
61 |
+
out_probability = []
|
62 |
+
with torch.no_grad():
|
63 |
+
predict = model(test_data)
|
64 |
+
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist())
|
65 |
+
test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
|
66 |
+
id2str = {0:"non-nAChRs", 1:"nAChRs"}
|
67 |
+
return id2str[test_argmax[0]], out_probability[0]
|
68 |
+
|
69 |
+
def conotoxinfinder(files):
|
70 |
+
fr=open(files, 'r')
|
71 |
+
seqs = []
|
72 |
+
for line in fr:
|
73 |
+
if not line.startswith('>'): #判断字符串是否以‘>开始’
|
74 |
+
seqs.append(line)
|
75 |
+
seq_all = []
|
76 |
+
output_all = []
|
77 |
+
probability_all = []
|
78 |
+
for seq in seqs:
|
79 |
+
output, probability = pre(str(seq))
|
80 |
+
seq_all.append(seq)
|
81 |
+
output_all.append(output)
|
82 |
+
probability_all.append(probability)
|
83 |
+
summary = OrderedDict()
|
84 |
+
summary['Seq'] = seq_all
|
85 |
+
summary['Class'] = output_all
|
86 |
+
summary['Probability'] = probability_all
|
87 |
+
summary_df = pd.DataFrame(summary)
|
88 |
+
summary_df.to_csv('output.csv', index=False)
|
89 |
+
return 'outputs.csv'
|
90 |
+
|
91 |
+
with open("conotoxinfinder.md", "r") as f:
|
92 |
+
description = f.read()
|
93 |
+
iface = gr.Interface(fn=conotoxinfinder,
|
94 |
+
title="ConotoxinFinder nAChRs",
|
95 |
+
inputs=[gr.Input("file", type="file", label="upload a file (.txt, .fasta) containing sequences")
|
96 |
+
],
|
97 |
+
outputs= "file",
|
98 |
+
description=description
|
99 |
+
)
|
100 |
+
iface.launch()
|