import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification import pandas as pd from transformers import set_seed import torch import torch.nn as nn from collections import OrderedDict import warnings import gradio as gr from tqdm import tqdm warnings.filterwarnings('ignore') set_seed(4) device = "cpu" model_checkpoint = "esm2_t30_150M_UR50D" class MyModel(nn.Module): def __init__(self): super().__init__() self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) self.bn1 = nn.BatchNorm1d(256) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(64) self.relu = nn.ReLU() self.fc1 = nn.Linear(320,256) self.fc2 = nn.Linear(256,128) self.fc3 = nn.Linear(128,64) self.output_layer = nn.Linear(64,2) self.dropout = nn.Dropout(0) def forward(self,x): with torch.no_grad(): bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) output_feature = self.dropout(bert_output["logits"]) output_feature = self.relu(self.bn1(self.fc1(output_feature))) output_feature = self.relu(self.bn2(self.fc2(output_feature))) output_feature = self.relu(self.bn3(self.fc3(output_feature))) output_feature = self.output_layer(output_feature) return torch.softmax(output_feature,dim=1) def Kmers_funct(seq,num): for i in range(len(seq)): a = seq[i] l = [] for index in range(len(a)): t = a[index:index + num] if (len(t)) == num: l.append(t) return l def ACE(file): test_seq = file all = [] seq_len = len(test_seq) if seq_len > 30: for j in range(2, 11): X = Kmers_funct([test_seq], j) all.extend(X) else: all.append(test_seq) model = MyModel() model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False) model = model.to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) max_len = 30 seq_all = [] output_all = [] probability_all = [] for seq in tqdm(all): test_data = tokenizer(seq, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') out_probability = [] with torch.no_grad(): predict = model(test_data) out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) test_argmax = np.argmax(predict.cpu(), axis=1).tolist() id2str = {0:"non-ACE", 1:"ACE"} output = id2str[test_argmax[0]] probability = out_probability[0] seq_all.append(seq) output_all.append(output) probability_all.append(probability) summary = OrderedDict() summary['Seq'] = seq_all summary['Class'] = output_all summary['Probability'] = probability_all summary_df = pd.DataFrame(summary) summary_df.to_csv('output.csv', index=False) if seq_len > 30: out_text = "None" out_prob = "None" else: out_text = output out_prob = probability return 'output.csv', out_text, out_prob with open("ACE.md", "r") as f: description = f.read() iface = gr.Interface(fn=ACE, title="🏹DeepACE", inputs=gr.Textbox(show_label=False, placeholder="Enter peptide or protein", lines=4), outputs= ["file",gr.Textbox(show_label=False, placeholder="class", lines=1),gr.Textbox(show_label=False, placeholder="probability", lines=1)], description=description) iface.launch()