File size: 10,804 Bytes
75548e5 7253b6a 75548e5 44bd3fb 75548e5 4f704c6 75548e5 4f704c6 75548e5 6caa644 75548e5 f4d3fef 75548e5 bac750a 75548e5 4655d1f 75548e5 4655d1f 75548e5 bac750a 5a0bf69 75548e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import VolumeMaker
import utils
import numpy as np
import random
import torch
import torch.nn as nn
import pathlib
import pandas as pd
import shutil
import subprocess
from transformers import AutoModelForSequenceClassification
from torch.utils.data import Dataset,DataLoader
import pandas as pd
device = torch.device("cpu")
import os
join=os.path.join
from transformers import AutoTokenizer
import torch.nn.functional as F
from rdkit import Chem
from rdkit.Chem import AllChem
from collections import OrderedDict
from tqdm import tqdm
import time
import gradio as gr
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
pdb_path = pathlib.Path(__file__).parent.joinpath("structure" )
# seq_path = "test3.csv"
temp_path = pathlib.Path(__file__).parent.joinpath("temp" )
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(4)
batch_size = 1
num_labels = 2
radius = 2
n_features = 1024
hid_dim = 300
n_heads = 1
dropout = 0
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
class MyDataset(Dataset):
def __init__(self,dict_data) -> None:
super(MyDataset,self).__init__()
self.data=dict_data
self.structure=pdb_structure(dict_data['structure'])
def __getitem__(self, index):
return self.data['text'][index], self.structure[index]
def __len__(self):
return len(self.data['text'])
def collate_fn(batch):
data = [item[0] for item in batch]
structure = torch.tensor([item[1].tolist() for item in batch]).to(device)
max_len = max([len(b[0]) for b in batch])+2
fingerprint = torch.tensor(peptides_to_fingerprint_matrix(data, radius, n_features),dtype=float).to(device)
pt_batch=tokenizer(data, padding=True, truncation=True, max_length=max_len, return_tensors='pt')
return {'input_ids':pt_batch['input_ids'].to(device),
'attention_mask':pt_batch['attention_mask'].to(device)}, structure, fingerprint
class AttentionBlock(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
assert hid_dim % n_heads == 0
self.f_q = nn.Linear(hid_dim, hid_dim)
self.f_k = nn.Linear(hid_dim, hid_dim)
self.f_v = nn.Linear(hid_dim, hid_dim)
self.fc = nn.Linear(hid_dim, hid_dim)
self.do = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim // n_heads])).to(device)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
Q = self.f_q(query)
K = self.f_k(key)
V = self.f_v(value)
Q = Q.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)
K_T = K.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3).transpose(2,3)
V = V.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)
energy = torch.matmul(Q, K_T) / self.scale
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = self.do(F.softmax(energy, dim=-1))
weighter_matrix = torch.matmul(attention, V)
weighter_matrix = weighter_matrix.permute(0, 2, 1, 3).contiguous()
weighter_matrix = weighter_matrix.view(batch_size, self.n_heads * (self.hid_dim // self.n_heads))
weighter_matrix = self.do(self.fc(weighter_matrix))
return weighter_matrix
class CrossAttentionBlock(nn.Module):
def __init__(self):
super(CrossAttentionBlock, self).__init__()
self.att = AttentionBlock(hid_dim = hid_dim, n_heads = n_heads, dropout=0.1)
def forward(self, structure_feature, fingerprint_feature, sequence_feature):
# cross attention for compound information enrichment
fingerprint_feature = fingerprint_feature + self.att(fingerprint_feature, structure_feature, structure_feature)
# self-attention
fingerprint_feature = self.att(fingerprint_feature, fingerprint_feature, fingerprint_feature)
# cross-attention for interaction
output = self.att(fingerprint_feature, sequence_feature, sequence_feature)
return output
def peptides_to_fingerprint_matrix(peptides, radius=radius, n_features=n_features):
n_peptides = len(peptides)
features = np.zeros((n_peptides, n_features))
for i, peptide in enumerate(peptides):
mol = Chem.MolFromSequence(peptide)
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_features)
fp_array = np.zeros((1,))
AllChem.DataStructs.ConvertToNumpyArray(fp, fp_array)
features[i, :] = fp_array
return features
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=hid_dim)
self.bn1 = nn.BatchNorm1d(256)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(64)
self.relu = nn.ReLU()
self.fc1 = nn.Linear(300,256)
self.fc2 = nn.Linear(256,128)
self.fc3 = nn.Linear(128,64)
self.fc_fingerprint = nn.Linear(1024,hid_dim)
self.fc_structure = nn.Linear(1500,hid_dim)
self.fingerprint_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=1024, hidden_size=1024//2, batch_first=True)
self.structure_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=500, hidden_size=500//2, batch_first=True)
self.output_layer = nn.Linear(64,num_labels)
self.dropout = nn.Dropout(0)
self.CAB = CrossAttentionBlock()
def forward(self,structure, x, fingerprint):
fingerprint = torch.unsqueeze(fingerprint, 2).float()
structure = structure.permute(0, 2, 1)
fingerprint = fingerprint.permute(0, 2, 1)
with torch.no_grad():
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device))
sequence_feature = self.dropout(bert_output["logits"])
structure = structure.to(device)
fingerprint_feature, _ = self.fingerprint_lstm(fingerprint)
structure_feature, _ = self.structure_lstm(structure)
fingerprint_feature = fingerprint_feature.flatten(start_dim=1)
structure_feature = structure_feature.flatten(start_dim=1)
fingerprint_feature = self.fc_fingerprint(fingerprint_feature)
structure_feature = self.fc_structure(structure_feature)
output_feature = self.CAB(structure_feature, fingerprint_feature, sequence_feature)
output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
output_feature = self.dropout(self.output_layer(output_feature))
print(output_feature)
return torch.softmax(output_feature,dim=1)
def pdb_structure(Structure_index):
created_folders = []
SurfacePoitCloud_all = []
for index in Structure_index:
structure_folder = join(temp_path, str(index))
created_folders.append(structure_folder)
pdb_file = join(pdb_path, f"{index}.pdb")
if os.path.exists(pdb_file):
shutil.copy2(pdb_file, structure_folder)
else:
print(f"PDB file not found for structure {index}")
coords, atname, pdbname, pdb_num = utils.parsePDB(structure_folder)
atoms_channel = utils.atomlistToChannels(atname)
radius = utils.atomlistToRadius(atname)
PointCloudSurfaceObject = VolumeMaker.PointCloudSurface(device=device)
coords = coords.to(device)
radius = radius.to(device)
atoms_channel = atoms_channel.to(device)
SurfacePoitCloud = PointCloudSurfaceObject(coords, radius)
feature = SurfacePoitCloud.view(pdb_num,-1,3).cpu()
SurfacePoitCloud_all.append(feature)
SurfacePoitCloud_all_tensor = torch.squeeze(torch.stack(SurfacePoitCloud_all),dim=1)
return SurfacePoitCloud_all_tensor
def ACE(file):
# df = pd.read_csv(seq_path)
# test_sequences = df["Seq"].tolist()
# test_Structure_index = df["Structure_index"].tolist()
test_sequences = file
test_Structure_index = "structure_1"
test_dict = {"text":test_sequences, 'structure':test_Structure_index}
print("=================================Structure prediction========================")
for i in tqdm(range(0, len(test_sequences))):
command = ["curl", "-X", "POST", "-k", "--data", f"{test_sequences[i]}", "https://api.esmatlas.com/foldSequence/v1/pdb/"]
result = subprocess.run(command, capture_output=True, text=True)
with open(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'), 'w') as file:
file.write(result.stdout)
test_data=MyDataset(test_dict)
test_dataloader=DataLoader(test_data,batch_size=batch_size,collate_fn=collate_fn,shuffle=False)
# 导入模型
model = MyModel()
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False)
model = model.to(device)
# 预测
model.eval()
with torch.no_grad():
probability_all = []
Target_all = []
print("=================================Start prediction========================")
for index, (batch, structure_fea, fingerprint) in enumerate(test_dataloader):
batchs = {k: v for k, v in batch.items()}
outputs = model(structure_fea, batchs, fingerprint)
probability = outputs[0].tolist()
print(outputs)
print(probability)
train_argmax = np.argmax(outputs.cpu().detach().numpy(), axis=1)
for j in range(0,len(train_argmax)):
output = train_argmax[j]
if output == 0:
Target = "low"
probability = probability[0]
elif output == 1:
Target = "high"
probability = probability[1]
print(Target, probability)
probability_all.append(probability)
Target_all.append(Target)
summary = OrderedDict()
summary['Seq'] = test_sequences
summary['Target'] = Target_all
summary['Probability'] = probability_all
summary_df = pd.DataFrame(summary)
summary_df.to_csv('output.csv', index=False)
out_text = output
out_prob = probability
return 'output.csv', out_text, out_prob
iface = gr.Interface(fn=ACE,
inputs="text",
outputs= ["file","text","text"])
iface.launch() |