File size: 23,754 Bytes
1d866ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2021 Gabriele Orlando
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch,math
from pyuul.sources.globalVariables import *
import numpy as np
import random
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(100)
class Voxels(torch.nn.Module):
def __init__(self, device=torch.device("cpu"),sparse=True):
"""
Constructor for the Voxels class, which builds the main PyUUL object.
Parameters
----------
device : torch.device
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
sparse : bool
Use sparse tensors calculation when possible
Returns
-------
"""
super(Voxels, self).__init__()
self.sparse=sparse
self.boxsize = None
self.dev = device
def __transform_coordinates(self,coords,radius=None):
"""
Private function that transform the coordinates to fit them in the 3d box. It also takes care of the resolution.
Parameters
----------
coords : torch.Tensor
Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 )
radius : torch.Tensor or None
Radius of the atoms. Shape ( batch, numberOfAtoms )
Returns
-------
coords : torch.Tensor
transformed coordinates
"""
coords = (coords*self.dilatation)- self.translation
if not radius is None:
radius = radius*self.dilatation
return coords,radius
else:
return coords
'''
def get_coords_voxel(self, voxel_indices, resolution):
"""
returns the coordinates of the center of the voxel provided its indices.
Parameters
----------
voxel_indices : torch.Tensor
Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 )
resolution : torch.Tensor or None
Radius of the atoms. Shape ( batch, numberOfAtoms )
Returns
-------
"""
#voxel_indices is a n,3 long tensor
centersCoords = voxel_indices + 0.5*resolution
return (centersCoords + self.translation)/self.dilatation
'''
def __define_spatial_conformation(self,mincoords,cubes_around_atoms_dim,resolution):
"""
Private function that defines the space of the volume. Takes resolution and margins into consideration.
Parameters
----------
mincoords : torch.Tensor
minimum coordinates of each macromolecule of the batch. Shape ( batch, 3 )
cubes_around_atoms_dim : int
maximum distance in number of voxels to check for atom contribution to occupancy of a voxel
resolution : float
side in A of a voxel. The lower this value is the higher the resolution of the final representation will be
Returns
-------
"""
self.translation=(mincoords-(cubes_around_atoms_dim)).unsqueeze(1)
self.dilatation = 1.0/resolution
'''
def find_cubes_indices(self,coords):
coords_scaled = self.transform_coordinates(coords)
return torch.trunc(coords_scaled.data).long()
'''
def forward( self,coords, radius,channels,numberchannels=None,resolution=1, cubes_around_atoms_dim=5, steepness=10,function="sigmoid"):
"""
Voxels representation of the macromolecules
Parameters
----------
coords : torch.Tensor
Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 ). Can be calculated from a PDB file using utils.parsePDB
radius : torch.Tensor
Radius of the atoms. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToRadius
channels: torch.LongTensor
channels of the atoms. Atoms of the same type shold belong to the same channel. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToChannels
numberchannels : int or None
maximum number of channels. if None, max(atNameHashing) + 1 is used
cubes_around_atoms_dim : int
maximum distance in number of voxels for which the contribution to occupancy is taken into consideration. Every atom that is farer than cubes_around_atoms_dim voxels from the center of a voxel does no give any contribution to the relative voxel occupancy
resolution : float
side in A of a voxel. The lower this value is the higher the resolution of the final representation will be
steepness : float or int
steepness of the sigmoid occupancy function.
function : "sigmoid" or "gaussian"
occupancy function to use. Can be sigmoid (every atom has a sigmoid shaped occupancy function) or gaussian (based on Li et al. 2014)
Returns
-------
volume : torch.Tensor
voxel representation of the macromolecules in the batch. Shape ( batch, channels, x,y,z), where x,y,z are the size of the 3D volume in which the macromolecules have been represented
"""
padding_mask = ~channels.eq(PADDING_INDEX)
if numberchannels is None:
numberchannels = int(channels[padding_mask].max().cpu().data+1)
self.featureVectorSize = numberchannels
self.function = function
arange_type = torch.int16
gx = torch.arange(-cubes_around_atoms_dim, cubes_around_atoms_dim + 1, device=self.dev, dtype=arange_type)
gy = torch.arange(-cubes_around_atoms_dim, cubes_around_atoms_dim + 1, device=self.dev, dtype=arange_type)
gz = torch.arange(-cubes_around_atoms_dim, cubes_around_atoms_dim + 1, device=self.dev, dtype=arange_type)
self.lato = gx.shape[0]
x1 = gx.unsqueeze(1).expand(self.lato, self.lato).unsqueeze(-1)
x2 = gy.unsqueeze(0).expand(self.lato, self.lato).unsqueeze(-1)
xy = torch.cat([x1, x2], dim=-1).unsqueeze(2).expand(self.lato, self.lato, self.lato, 2)
x3 = gz.unsqueeze(0).unsqueeze(1).expand(self.lato, self.lato, self.lato).unsqueeze(-1)
del gx, gy, gz, x1, x2
self.standard_cube = torch.cat([xy, x3], dim=-1).unsqueeze(0).unsqueeze(0)
### definition of the box ###
# you take the maximum and min coord on each dimension (every prot in the batch shares the same box. In the future we can pack, but I think this is not the bottleneck)
# I scale by resolution
# I add the cubes in which I define the gradient. One in the beginning and one at the end --> 2*
mincoords = torch.min(coords[:, :, :], dim=1)[0]
mincoords = torch.trunc(mincoords / resolution)
box_size_x = (math.ceil(torch.max(coords[padding_mask][:,0])/resolution)-mincoords[:,0].min())+(2*cubes_around_atoms_dim+1)
box_size_y = (math.ceil(torch.max(coords[padding_mask][:,1])/resolution)-mincoords[:,1].min())+(2*cubes_around_atoms_dim+1)
box_size_z = (math.ceil(torch.max(coords[padding_mask][:,2])/resolution)-mincoords[:,2].min())+(2*cubes_around_atoms_dim+1)
#############################
self.__define_spatial_conformation(mincoords,cubes_around_atoms_dim,resolution) #define the spatial transforms to coordinates
coords,radius = self.__transform_coordinates(coords,radius)
boxsize = (int(box_size_x),int(box_size_y),int(box_size_z))
self.boxsize=boxsize
#selecting best types for indexing
if max(boxsize)<256: # i can use byte tensor
self.dtype_indices=torch.uint8
else:
self.dtype_indices = torch.int16
if self.function=="sigmoid":
volume = self.__forward_actual_calculation(coords, boxsize, radius, channels,padding_mask,steepness,resolution)
elif self.function=="gaussian":
volume = self.__forward_actual_calculationGaussian(coords, boxsize, radius, channels, padding_mask,resolution)
return volume
def __forward_actual_calculationGaussian(self, coords_scaled, boxsize, radius, atNameHashing, padding_mask,resolution):
"""
private function for the calculation of the gaussian voxel occupancy
Parameters
----------
coords_scaled : torch.LongTensor
Discrete Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 )
boxsize : torch.LongTensor
The size of the box in which the macromolecules are represented
radius : torch.Tensor
Radius of the atoms. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToRadius
atNameHashing: torch.LongTensor
channels of the atoms. Atoms of the same type shold belong to the same channel. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToChannels
resolution : float
side in A of a voxel. The lower this value is the higher the resolution of the final representation will be
padding_mask : torch.BoolTensor
tensor to mask the padding. Shape (batch, numberOfAtoms)
Returns
-------
volume : torch.Tensor
voxel representation of the macromolecules in the batch with Gaussian occupancy function. Shape ( batch, channels, x,y,z), where x,y,z are the size of the 3D volume in which the macromolecules have been represented
"""
batch = coords_scaled.shape[0]
dev = self.dev
L = coords_scaled.shape[1]
discrete_coordinates = torch.trunc(coords_scaled.data).to(self.dtype_indices)
#### making everything in the volume shape
# implicit_cube_formation
radius = radius.unsqueeze(2).unsqueeze(3).unsqueeze(4)
atNameHashing = atNameHashing.unsqueeze(2).unsqueeze(3).unsqueeze(4)
coords_scaled = coords_scaled.unsqueeze(2).unsqueeze(3).unsqueeze(4)
discrete_coordinates = discrete_coordinates.unsqueeze(2).unsqueeze(3).unsqueeze(4)
distmat_standard_cube = torch.norm(
coords_scaled - ((discrete_coordinates + self.standard_cube + 1) + 0.5 * resolution), dim=-1).to(
coords_scaled.dtype)
atNameHashing = atNameHashing.long()
#### old sigmoid stuff
'''
exponent = self.steepness*(distmat_standard_cube-radius)
exp_mask = exponent.ge(10)
exponent = torch.masked_fill(exponent,exp_mask, 10)
volume_cubes = 1.0/(1.0+torch.exp(exponent))
'''
### from doi: 10.1142/S0219633614400021 eq 1
sigma = 0.93
exponent = -distmat_standard_cube[padding_mask] ** 2 / (sigma ** 2 * radius[padding_mask] ** 2)
exp_mask = exponent.ge(10)
exponent = torch.masked_fill(exponent, exp_mask, 10)
volume_cubes = torch.exp(exponent)
#### index_put everything ###
batch_list = torch.arange(batch,device=dev).unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1).expand(batch,L,self.lato,self.lato,self.lato)
cubes_coords = (discrete_coordinates[padding_mask] + self.standard_cube.squeeze(0) + 1)[~exp_mask]
atNameHashing = atNameHashing[padding_mask].expand(-1,self.lato,self.lato,self.lato)
if self.sparse:
index_tens = torch.cat(
[batch_list[padding_mask][~exp_mask].view(-1).unsqueeze(0),
atNameHashing[~exp_mask].unsqueeze(0),
cubes_coords[:,0].unsqueeze(0),
cubes_coords[:,1].unsqueeze(0),
cubes_coords[:,2].unsqueeze(0),
])
#index_tens = torch.cat(index)
volume_cubes = volume_cubes[~exp_mask].view(-1)
volume_cubes = torch.log(1 - volume_cubes.contiguous())
#powOrExpIsNotImplementedInSparse
volume = torch.sparse_coo_tensor(indices=index_tens, values=volume_cubes.exp(), size=[batch, self.featureVectorSize, boxsize[0] , boxsize[1] , boxsize[2] ]).coalesce()
volume = torch.sparse_coo_tensor(volume.indices(),1 - volume.values(), volume.shape)
else:
volume = torch.zeros(batch,boxsize[0]+1,boxsize[1]+1,boxsize[2]+1,self.featureVectorSize,device=dev,dtype=torch.float)
#index = (batch_list[padding_mask].view(-1),cubes_coords[padding_mask][:,:,:,:,0].view(-1), cubes_coords[padding_mask][:,:,:,:,1].view(-1), cubes_coords[padding_mask][:,:,:,:,2].view(-1), atNameHashing[padding_mask].view(-1) )
index = (batch_list[padding_mask][~exp_mask].view(-1).long(),
cubes_coords[:,0].long(),
cubes_coords[:,1].long(),
cubes_coords[:,2].long(),
atNameHashing[~exp_mask])
volume_cubes=volume_cubes[~exp_mask].view(-1)
volume_cubes = torch.log(1 - volume_cubes.contiguous())
volume = 1- torch.exp(volume.index_put(index,volume_cubes,accumulate=True))
#volume = 1 - torch.exp(volume.index_put(index, torch.log(1 - volume_cubes.contiguous().view(-1)), accumulate=True))
volume=volume.permute(0,4,1,2,3)
#volume = -torch.nn.functional.threshold(-volume,-1,-1)
return volume
return volume
def __sparseClamp(self,volume, minv, maxv):
vals = volume.values()
ind = volume.indices()
vals = vals.clamp(minv, maxv)
volume = torch.sparse_coo_tensor(indices=ind, values=vals, size=volume.shape).coalesce()
return volume
def __forward_actual_calculation(self, coords_scaled, boxsize, radius,atNameHashing,padding_mask,steepness,resolution):
"""
private function for the calculation of the gaussian voxel occupancy
Parameters
----------
coords_scaled : torch.LongTensor
Discrete Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 )
boxsize : torch.LongTensor
The size of the box in which the macromolecules are represented
radius : torch.Tensor
Radius of the atoms. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToRadius
atNameHashing: torch.LongTensor
channels of the atoms. Atoms of the same type shold belong to the same channel. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToChannels
resolution : float
side in A of a voxel. The lower this value is the higher the resolution of the final representation will be
padding_mask : torch.BoolTensor
tensor to mask the padding. Shape (batch, numberOfAtoms)
steepness : float
steepness of the sigmoid function (coefficient of the exponent)
Returns
-------
volume : torch.Tensor
voxel representation of the macromolecules in the batch with Sigmoid occupancy function. Shape ( batch, channels, x,y,z), where x,y,z are the size of the 3D volume in which the macromolecules have been represented
"""
batch = coords_scaled.shape[0]
dev=self.dev
L = coords_scaled.shape[1]
discrete_coordinates = torch.trunc(coords_scaled.data).to(self.dtype_indices)
#### making everything in the volume shape
#implicit_cube_formation
radius = radius.unsqueeze(2).unsqueeze(3).unsqueeze(4)
atNameHashing = atNameHashing.unsqueeze(2).unsqueeze(3).unsqueeze(4)
coords_scaled = coords_scaled.unsqueeze(2).unsqueeze(3).unsqueeze(4)
discrete_coordinates = discrete_coordinates.unsqueeze(2).unsqueeze(3).unsqueeze(4)
distmat_standard_cube = torch.norm(coords_scaled-((discrete_coordinates + self.standard_cube + 1) + 0.5 * resolution), dim=-1).to(coords_scaled.dtype)
atNameHashing = atNameHashing.long()
exponent = steepness*(distmat_standard_cube[padding_mask]-radius[padding_mask])
del distmat_standard_cube
exp_mask = exponent.ge(10)
exponent = torch.masked_fill(exponent,exp_mask, 10)
volume_cubes = 1.0/(1.0+torch.exp(exponent))
#### index_put everything ###
batch_list = torch.arange(batch,device=dev).unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1).expand(batch,L,self.lato,self.lato,self.lato)
#cubes_coords = coords_scaled + self.standard_cube + 1
cubes_coords = (discrete_coordinates[padding_mask] + self.standard_cube.squeeze(0) + 1)[~exp_mask]
atNameHashing = atNameHashing[padding_mask].expand(-1,self.lato,self.lato,self.lato)
if self.sparse:
index_tens = torch.cat(
[batch_list[padding_mask][~exp_mask].view(-1).unsqueeze(0),
atNameHashing[~exp_mask].unsqueeze(0),
cubes_coords[:,0].unsqueeze(0),
cubes_coords[:,1].unsqueeze(0),
cubes_coords[:,2].unsqueeze(0),
])
#index_tens = torch.cat(index)
volume = torch.sparse_coo_tensor(indices=index_tens, values=volume_cubes[~exp_mask].view(-1), size=[batch, self.featureVectorSize, boxsize[0] , boxsize[1] , boxsize[2] ]).coalesce()
volume = self.__sparseClamp(volume,0,1)
else:
volume = torch.zeros(batch,boxsize[0]+1,boxsize[1]+1,boxsize[2]+1,self.featureVectorSize,device=dev,dtype=torch.float)
#index = (batch_list[padding_mask].view(-1),cubes_coords[padding_mask][:,:,:,:,0].view(-1), cubes_coords[padding_mask][:,:,:,:,1].view(-1), cubes_coords[padding_mask][:,:,:,:,2].view(-1), atNameHashing[padding_mask].view(-1) )
index = (batch_list[padding_mask][~exp_mask].view(-1).long(),
cubes_coords[:,0].long(),
cubes_coords[:,1].long(),
cubes_coords[:,2].long(),
atNameHashing[~exp_mask])
volume_cubes=volume_cubes[~exp_mask].view(-1)
volume = volume.index_put(index,volume_cubes.view(-1),accumulate=True)
volume = -torch.nn.functional.threshold(-volume,-1,-1)
volume = volume.permute(0,4,1,2,3)
return volume
'''
mesh will be added as soon as pytorch3d becomes a little more stable
def mesh(self,coords, radius,threshSurface = 0.01):
atNameHashing= torch.zeros(radius.shape).to(self.dev)
mask = radius.eq(PADDING_INDEX)
atNameHashing = atNameHashing.masked_fill_(mask,PADDING_INDEX)
vol = self(coords,radius,atNameHashing).to_dense()
mesh = cubifyNOALIGN(vol.sum(-1),thresh=threshSurface)# creates pytorch 3d mesh from cubes. It uses a MODIFIED version of pytorch3d with no align
return mesh
'''
class PointCloudSurface(torch.nn.Module):
def __init__(self,device="cpu"):
"""
Constructor for the CloudPointSurface class, which builds the main PyUUL object for cloud surface.
Parameters
----------
device : torch.device
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
Returns
-------
"""
super(PointCloudSurface, self).__init__()
self.device=device
def __buildStandardSphere(self,npoints=50): # Fibonacci lattice
goldenRatio = (1 + 5 ** 0.5) / 2
i = torch.arange(0, npoints,device=self.device)
theta = 2 * math.pi * i / goldenRatio
phi = torch.acos(1 - 2 * (i + 0.5) / npoints)
x, y, z = torch.cos(theta) * torch.sin(phi), torch.sin(theta) * torch.sin(phi), torch.cos(phi)
coords=torch.cat([x.unsqueeze(-1),y.unsqueeze(-1),z.unsqueeze(-1)],dim=-1)
#plot_volume(False,20*coords.unsqueeze(0))
return coords
def forward(self, coords, radius, maxpoints=5000,external_radius_factor=1.4):
"""
Function to calculate the surface cloud point representation of macromolecules
Parameters
----------
coords : torch.Tensor
Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 ). Can be calculated from a PDB file using utils.parsePDB
radius : torch.Tensor
Radius of the atoms. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToRadius
maxpoints : int
number of points per macromolecule in the batch
external_radius_factor=1.4
multiplicative factor of the radius in order ot define the place to sample the points around each atom. The higher this value is, the smoother the surface will be
Returns
-------
surfacePointCloud : torch.Tensor
surface point cloud representation of the macromolecules in the batch. Shape ( batch, channels, numberOfAtoms, 3)
"""
padding_mask = ~radius.eq(PADDING_INDEX)
batch = coords.shape[0]
npoints = torch.div(maxpoints,(padding_mask.sum(-1).min() + 1), rounding_mode="floor") * 2 # we ensure that the smallest protein has at least maxpoints points
sphere = self.__buildStandardSphere(npoints)
finalPoints=[]
for b in range(batch):
distmat = torch.cdist(coords[b][padding_mask[b]].unsqueeze(0), coords[b][padding_mask[b]].unsqueeze(0))
L=distmat.shape[1]
AtomSelfContributionMask = torch.eye(L, dtype=torch.bool, device=self.device).unsqueeze(0)
triangular_mask = ~torch.tril(torch.ones((L, L), dtype=torch.bool, device=self.device), diagonal=-1).unsqueeze(0)
#todoMask = (distmat[b].le(5) & (~AtomSelfContributionMask) & triangular_mask).squeeze(0)
external_radius = radius * external_radius_factor
todoMask = (distmat[0].le(5) & (~AtomSelfContributionMask)).squeeze(0)
points = coords[b][padding_mask[b]].unsqueeze(0).unsqueeze(-2) - sphere.unsqueeze(0).unsqueeze(1) * external_radius[b][padding_mask[b]].unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
p = points.expand( L, L, npoints, 3)[todoMask]
c = coords[b][padding_mask[b]].unsqueeze(1).unsqueeze(-2).expand( L, L, points.shape[2], 3)[todoMask]
r = radius[b][padding_mask[b]].unsqueeze(1).unsqueeze(-2).expand( L, L, points.shape[2])[todoMask]
occupancy = self.__occupancy(p, c, r)
point_index = torch.arange(0,L*npoints,device=self.device).view(L,npoints).unsqueeze(0).expand(L,L,npoints)[todoMask]
point_occupancy =torch.zeros((L*npoints),dtype=torch.float,device=self.device)
point_occupancy = point_occupancy.index_put_([point_index.view(-1)], occupancy.view(-1), accumulate=True)
point_occupancy = (1- torch.exp(point_occupancy))
points_on_surfaceMask = point_occupancy.le(0.5)
points=points.permute(0,3,1,2).view(3,-1).transpose(0,1)[points_on_surfaceMask]
random_indices = torch.randint(0, points.shape[0], [maxpoints], device=self.device)
sampled_points = points[random_indices,:]
finalPoints +=[sampled_points]
return torch.cat(finalPoints,dim=0)
def __occupancy(self, points, coords, radius):
dist = torch.norm(points-coords,dim=-1)
sigma=0.93
exponent = -dist**2/(sigma**2 * radius**2)
exp_mask = exponent.ge(10)
exponent = torch.masked_fill(exponent, exp_mask, 10)
occupancy_on_points = torch.exp(exponent)
return torch.log(1-occupancy_on_points)
return occupancy_on_points
del exponent
AtomSelfContributionMask = torch.eye(L,dtype=torch.bool,device=self.device).unsqueeze(0).expand(batch,L,L)
occupancy_on_points[AtomSelfContributionMask]=0.0
occupancy = (1-torch.exp(torch.log(1-occupancy_on_points).sum(2)))#.sum(dim=-1)/npoints
#if log_correction:
# occupancy = -torch.log(occupancy + 1) # log scaling
return occupancy
class PointCloudVolume(torch.nn.Module):
def __init__(self, device="cpu"):
"""
Constructor for the CloudPointSurface class, which builds the main PyUUL object for volumetric point cloud.
Parameters
----------
device : torch.device
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
Returns
-------
"""
super(PointCloudVolume, self).__init__()
self.device = device
def forward(self, coords, radius, maxpoints=500):
"""
Function to calculate the volumetric cloud point representation of macromolecules
Parameters
----------
coords : torch.Tensor
Coordinates of the atoms. Shape ( batch, numberOfAtoms, 3 ). Can be calculated from a PDB file using utils.parsePDB
radius : torch.Tensor
Radius of the atoms. Shape ( batch, numberOfAtoms ). Can be calculated from a PDB file using utils.parsePDB and utils.atomlistToRadius
maxpoints : int
number of points per macromolecule in the batch
Returns
-------
PointCloudVolume : torch.Tensor
volume point cloud representation of the macromolecules in the batch. Shape ( batch, channels, numberOfAtoms, 3)
"""
padding_mask = ~radius.eq(PADDING_INDEX)
#npoints = torch.div(maxpoints, padding_mask.sum(-1).min()) + 1 # we ensure that the smallest protein has at least 5000 points
batch = coords.shape[0]
L = coords.shape[1]
batched = []
for i in range(batch):
mean = coords[i][padding_mask[i]]
sampled = radius[i][padding_mask[i]].sqrt().unsqueeze(-1) * torch.randn((mean.size()), device=self.device) + mean
p = sampled.view(-1,3)
random_indices = torch.randint(0, p.shape[0], [maxpoints], device=self.device)
batched+=[p[random_indices].unsqueeze(0)]
batched = torch.cat(batched,dim=0)
return batched
|