File size: 10,848 Bytes
75548e5
 
 
 
 
 
7253b6a
75548e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bd3fb
75548e5
 
4f704c6
75548e5
4f704c6
75548e5
 
 
 
 
 
 
9e776ed
75548e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afa9ba
75548e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6caa644
75548e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afa9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d5045
75548e5
 
 
1afa9ba
 
 
 
 
75548e5
5bf0bdf
1afa9ba
75548e5
 
 
1afa9ba
 
 
 
 
 
75548e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822cac5
 
 
9e776ed
 
 
75548e5
ed8660a
 
c9239ce
9e776ed
ed8660a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import VolumeMaker
import utils
import numpy as np
import random
import torch
import torch.nn as nn
import pathlib
import pandas as pd
import shutil
import subprocess
from transformers import AutoModelForSequenceClassification
from torch.utils.data import Dataset,DataLoader
import pandas as pd
device = torch.device("cpu") 
import os
join=os.path.join
from transformers import AutoTokenizer
import torch.nn.functional as F
from rdkit import Chem
from rdkit.Chem import AllChem
from collections import OrderedDict
from tqdm import tqdm
import time
import gradio as gr

model_checkpoint = "facebook/esm2_t6_8M_UR50D"
pdb_path = pathlib.Path(__file__).parent.joinpath("structure" )
# seq_path = "test3.csv"
temp_path = pathlib.Path(__file__).parent.joinpath("temp" )

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
setup_seed(4)


batch_size = 1
num_labels = 2
radius = 2
n_features = 1024
hid_dim = 300
n_heads = 1
dropout = 0

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

class MyDataset(Dataset):
    def __init__(self,dict_data) -> None:
        super(MyDataset,self).__init__()
        self.data=dict_data
        self.structure=pdb_structure(dict_data['structure'])
    def __getitem__(self, index):
        return self.data['text'][index], self.structure[index]
    def __len__(self):
        return len(self.data['text'])

def collate_fn(batch):
    data = [item[0] for item in batch]
    structure = torch.tensor([item[1].tolist() for item in batch]).to(device)
    max_len = max([len(b[0]) for b in batch])+2
    fingerprint = torch.tensor(peptides_to_fingerprint_matrix(data, radius, n_features),dtype=float).to(device)
    pt_batch=tokenizer(data, padding=True, truncation=True, max_length=max_len, return_tensors='pt')
    return {'input_ids':pt_batch['input_ids'].to(device),
            'attention_mask':pt_batch['attention_mask'].to(device)}, structure, fingerprint

class AttentionBlock(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout):
        super().__init__()

        self.hid_dim = hid_dim
        self.n_heads = n_heads

        assert hid_dim % n_heads == 0

        self.f_q = nn.Linear(hid_dim, hid_dim)
        self.f_k = nn.Linear(hid_dim, hid_dim)
        self.f_v = nn.Linear(hid_dim, hid_dim)

        self.fc = nn.Linear(hid_dim, hid_dim)

        self.do = nn.Dropout(dropout)

        self.scale = torch.sqrt(torch.FloatTensor([hid_dim // n_heads])).to(device)

    def forward(self, query, key, value, mask=None):
        batch_size = query.shape[0]

        Q = self.f_q(query)
        K = self.f_k(key)
        V = self.f_v(value)

        Q = Q.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)
        K_T = K.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3).transpose(2,3)
        V = V.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)

        energy = torch.matmul(Q, K_T) / self.scale

        if mask is not None:
            energy = energy.masked_fill(mask == 0, -1e10)

        attention = self.do(F.softmax(energy, dim=-1))

        weighter_matrix = torch.matmul(attention, V)

        weighter_matrix = weighter_matrix.permute(0, 2, 1, 3).contiguous()

        weighter_matrix = weighter_matrix.view(batch_size, self.n_heads * (self.hid_dim // self.n_heads))

        weighter_matrix = self.do(self.fc(weighter_matrix))

        return weighter_matrix

class CrossAttentionBlock(nn.Module):
    def __init__(self):
        super(CrossAttentionBlock, self).__init__()
        self.att = AttentionBlock(hid_dim = hid_dim, n_heads = n_heads, dropout=0.1)    
    def forward(self, structure_feature, fingerprint_feature, sequence_feature):
        # cross attention for compound information enrichment
        fingerprint_feature = fingerprint_feature + self.att(fingerprint_feature, structure_feature, structure_feature)
        # self-attention
        fingerprint_feature = self.att(fingerprint_feature, fingerprint_feature, fingerprint_feature)
        # cross-attention for interaction
        output = self.att(fingerprint_feature, sequence_feature, sequence_feature)
        return output

def peptides_to_fingerprint_matrix(peptides, radius=radius, n_features=n_features):
    n_peptides = len(peptides)
    features = np.zeros((n_peptides, n_features))
    for i, peptide in enumerate(peptides):
        mol = Chem.MolFromSequence(peptide)
        fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_features)
        fp_array = np.zeros((1,))
        AllChem.DataStructs.ConvertToNumpyArray(fp, fp_array)
        features[i, :] = fp_array
    return features

class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=hid_dim)
        self.bn1 = nn.BatchNorm1d(256)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(64)
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(300,256)
        self.fc2 = nn.Linear(256,128)
        self.fc3 = nn.Linear(128,64)
        self.fc_fingerprint = nn.Linear(1024,hid_dim)
        self.fc_structure = nn.Linear(1500,hid_dim)
        self.fingerprint_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=1024, hidden_size=1024//2, batch_first=True)
        self.structure_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=500, hidden_size=500//2, batch_first=True)
        self.output_layer = nn.Linear(64,num_labels)
        self.dropout = nn.Dropout(0)
        self.CAB = CrossAttentionBlock()
    def forward(self,structure, x, fingerprint):
        fingerprint = torch.unsqueeze(fingerprint, 2).float()
        structure = structure.permute(0, 2, 1)
        fingerprint = fingerprint.permute(0, 2, 1)
        with torch.no_grad():
            bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) 
        sequence_feature = self.dropout(bert_output["logits"])
        structure = structure.to(device)
        fingerprint_feature, _  = self.fingerprint_lstm(fingerprint)
        structure_feature, _  = self.structure_lstm(structure)
        fingerprint_feature = fingerprint_feature.flatten(start_dim=1)
        structure_feature = structure_feature.flatten(start_dim=1)
        fingerprint_feature = self.fc_fingerprint(fingerprint_feature)
        structure_feature = self.fc_structure(structure_feature)
        output_feature = self.CAB(structure_feature, fingerprint_feature, sequence_feature)
        output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
        output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
        output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
        output_feature = self.dropout(self.output_layer(output_feature))
        return torch.softmax(output_feature,dim=1)


def pdb_structure(Structure_index):
    created_folders = []
    SurfacePoitCloud_all = []
    for index in Structure_index:
        structure_folder = join(temp_path, str(index))
        os.makedirs(structure_folder, exist_ok=True)
        created_folders.append(structure_folder)
        pdb_file = join(pdb_path, f"{index}.pdb")
        if os.path.exists(pdb_file):
            shutil.copy2(pdb_file, structure_folder)
        else:
            print(f"PDB file not found for structure {index}")
        coords, atname, pdbname, pdb_num = utils.parsePDB(structure_folder)
        atoms_channel = utils.atomlistToChannels(atname)
        radius = utils.atomlistToRadius(atname)
        PointCloudSurfaceObject = VolumeMaker.PointCloudSurface(device=device)
        coords = coords.to(device)
        radius = radius.to(device)
        atoms_channel = atoms_channel.to(device)
        SurfacePoitCloud = PointCloudSurfaceObject(coords, radius)
        feature = SurfacePoitCloud.view(pdb_num,-1,3).cpu()
        SurfacePoitCloud_all.append(feature)
    SurfacePoitCloud_all_tensor = torch.squeeze(torch.stack(SurfacePoitCloud_all),dim=1)
    for folder in created_folders:
        shutil.rmtree(folder)
    return SurfacePoitCloud_all_tensor

def ACE(file):
    if not os.path.exists(pdb_path):
        os.makedirs(pdb_path)
    else:
        shutil.rmtree(pdb_path)
        os.makedirs(pdb_path)
        
    test_sequences = [file]
    test_Structure_index = [f"structure_{i}" for i in range(len(test_sequences))]

    
    test_dict = {"text":test_sequences, 'structure':test_Structure_index}
    print("=================================Structure prediction========================")
    for i in tqdm(range(0, len(test_sequences))):
        command = ["curl", "-X", "POST", "-k", "--data", f"{test_sequences[i]}", "https://api.esmatlas.com/foldSequence/v1/pdb/"]
        result = subprocess.run(command, capture_output=True, text=True)
        with open(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'), 'w') as file:
            file.write(result.stdout)
    test_data=MyDataset(test_dict)
    test_dataloader=DataLoader(test_data,batch_size=batch_size,collate_fn=collate_fn,shuffle=False)

    # 导入模型
    model = MyModel()
    model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False)
    model = model.to(device)

    # 预测
    model.eval()
    with torch.no_grad():
        probability_all = []
        Target_all = []
        print("=================================Start prediction========================")
        for index, (batch, structure_fea, fingerprint) in enumerate(test_dataloader):
            batchs = {k: v for k, v in batch.items()}
            outputs = model(structure_fea, batchs, fingerprint)
            probability = outputs[0].tolist()
            train_argmax = np.argmax(outputs.cpu().detach().numpy(), axis=1)
            for j in range(0,len(train_argmax)):
                output = train_argmax[j]
                if output == 0:
                    Target = "low"
                    probability = probability[0]
                elif output == 1:
                    Target = "high"
                    probability = probability[1]
    out_text = Target
    out_prob = probability        
    return out_text, out_prob
    
with open("ACE.md", "r") as f:
    description = f.read()
iface = gr.Interface(fn=ACE,
                     title="🚀DeepACE: ACE classification model",
                     inputs=gr.Textbox(show_label=False, placeholder="Enter peptide or protein", lines=4), 
                     outputs= [gr.Textbox(show_label=False, placeholder="class", lines=1), gr.Textbox(show_label=False, placeholder="probability", lines=1)],
                     description=description)
iface.launch()