Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 Gabriele Orlando
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os,torch
|
16 |
+
from pyuul.sources.globalVariables import *
|
17 |
+
from pyuul.sources import hashings
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import random
|
21 |
+
|
22 |
+
def setup_seed(seed):
|
23 |
+
torch.manual_seed(seed)
|
24 |
+
torch.cuda.manual_seed_all(seed)
|
25 |
+
np.random.seed(seed)
|
26 |
+
random.seed(seed)
|
27 |
+
torch.backends.cudnn.deterministic = True
|
28 |
+
setup_seed(100)
|
29 |
+
|
30 |
+
def parseSDF(SDFFile):
|
31 |
+
"""
|
32 |
+
function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
SDFFile : str
|
37 |
+
path of the PDB file or of the folder containing multiple PDB files
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
coords : torch.Tensor
|
42 |
+
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
|
43 |
+
|
44 |
+
atomNames : list
|
45 |
+
a list of the atom identifier. It encodes atom type, residue type, residue position and chain
|
46 |
+
|
47 |
+
"""
|
48 |
+
if not os.path.isdir(SDFFile):
|
49 |
+
fil = SDFFile
|
50 |
+
totcoords=[]
|
51 |
+
totaname=[]
|
52 |
+
coords = []
|
53 |
+
atomNames = []
|
54 |
+
for line in open(fil).readlines():
|
55 |
+
a=line.strip().split()
|
56 |
+
if len(a)==16: ## atom
|
57 |
+
element = a[3]
|
58 |
+
x = float(a[0])
|
59 |
+
y = float(a[1])
|
60 |
+
z = float(a[2])
|
61 |
+
coords += [[x,y,z]]
|
62 |
+
#aname = line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]
|
63 |
+
aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"
|
64 |
+
|
65 |
+
atomNames += [aname]
|
66 |
+
elif "$$$$" in line:
|
67 |
+
totcoords+=[torch.tensor(coords)]
|
68 |
+
totaname += [atomNames]
|
69 |
+
coords=[]
|
70 |
+
atomNames=[]
|
71 |
+
return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname
|
72 |
+
else:
|
73 |
+
totcoords = []
|
74 |
+
totaname = []
|
75 |
+
for fil in sorted(os.listdir(SDFFile)):
|
76 |
+
coords = []
|
77 |
+
atomNames = []
|
78 |
+
for line in open(SDFFile+fil).readlines():
|
79 |
+
a = line.strip().split()
|
80 |
+
if len(a) == 16: ## atom
|
81 |
+
element = a[3]
|
82 |
+
x = float(a[0])
|
83 |
+
y = float(a[1])
|
84 |
+
z = float(a[2])
|
85 |
+
coords += [[x, y, z]]
|
86 |
+
aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"
|
87 |
+
|
88 |
+
atomNames += [aname]
|
89 |
+
elif "$$$$" in line:
|
90 |
+
totcoords += [torch.tensor(coords)]
|
91 |
+
totaname += [atomNames]
|
92 |
+
coords = []
|
93 |
+
atomNames = []
|
94 |
+
return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname
|
95 |
+
|
96 |
+
|
97 |
+
def parsePDB(PDBFile,keep_only_chains=None,keep_hetatm=True,bb_only=False):
|
98 |
+
|
99 |
+
"""
|
100 |
+
function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
PDBFile : str
|
105 |
+
path of the PDB file or of the folder containing multiple PDB files
|
106 |
+
bb_only : bool
|
107 |
+
if True ignores all the atoms but backbone N, C and CA
|
108 |
+
keep_only_chains : str or None
|
109 |
+
ignores all the chain but the one given. If None it keeps all chains
|
110 |
+
keep_hetatm : bool
|
111 |
+
if False it ignores heteroatoms
|
112 |
+
Returns
|
113 |
+
-------
|
114 |
+
coords : torch.Tensor
|
115 |
+
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
|
116 |
+
|
117 |
+
atomNames : list
|
118 |
+
a list of the atom identifier. It encodes atom type, residue type, residue position and chain
|
119 |
+
|
120 |
+
"""
|
121 |
+
|
122 |
+
bbatoms = ["N", "CA", "C"]
|
123 |
+
if not os.path.isdir(PDBFile):
|
124 |
+
fil = PDBFile
|
125 |
+
coords = []
|
126 |
+
atomNames = []
|
127 |
+
cont = -1
|
128 |
+
oldres=-999
|
129 |
+
for line in open(fil).readlines():
|
130 |
+
|
131 |
+
|
132 |
+
if line[:4] == "ATOM":
|
133 |
+
if keep_only_chains is not None and (not line[21] in keep_only_chains):
|
134 |
+
continue
|
135 |
+
if bb_only and not line[12:16].strip() in bbatoms:
|
136 |
+
continue
|
137 |
+
if oldres != int(line[22:26]):
|
138 |
+
cont+=1
|
139 |
+
oldres=int(line[22:26])
|
140 |
+
resnum = int(line[22:26])
|
141 |
+
atomNames += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]
|
142 |
+
|
143 |
+
x = float(line[30:38])
|
144 |
+
y = float(line[38:46])
|
145 |
+
z = float(line[47:54])
|
146 |
+
coords+=[[x,y,z]]
|
147 |
+
|
148 |
+
elif line[:6] == "HETATM" and keep_hetatm:
|
149 |
+
|
150 |
+
resname_het = line[17:20].strip()
|
151 |
+
resnum = int(line[22:26])
|
152 |
+
x = float(line[30:38])
|
153 |
+
y = float(line[38:46])
|
154 |
+
z = float(line[47:54])
|
155 |
+
coords += [[x, y, z]]
|
156 |
+
atnameHet = line[12:16].strip()
|
157 |
+
atomNames += [resname_het+"_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
|
158 |
+
return torch.tensor(coords).unsqueeze(0), [atomNames]
|
159 |
+
else:
|
160 |
+
coords = []
|
161 |
+
atomNames = []
|
162 |
+
pdbname = []
|
163 |
+
pdb_num = 0
|
164 |
+
for fil in sorted(os.listdir(PDBFile)):
|
165 |
+
# print(pdb_num)
|
166 |
+
pdb_num +=1
|
167 |
+
pdbname.append(fil)
|
168 |
+
atomNamesTMP = []
|
169 |
+
coordsTMP = []
|
170 |
+
cont = -1
|
171 |
+
oldres=-999
|
172 |
+
for line in open(PDBFile+"/"+fil).readlines():
|
173 |
+
|
174 |
+
if line[:4] == "ATOM":
|
175 |
+
if keep_only_chains is not None and (not line[21] in keep_only_chains):
|
176 |
+
continue
|
177 |
+
if bb_only and not line[12:16].strip() in bbatoms:
|
178 |
+
continue
|
179 |
+
if oldres != int(line[22:26]):
|
180 |
+
cont += 1
|
181 |
+
oldres = int(line[22:26])
|
182 |
+
|
183 |
+
resnum = int(line[22:26])
|
184 |
+
atomNamesTMP += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]
|
185 |
+
|
186 |
+
x = float(line[30:38])
|
187 |
+
y = float(line[38:46])
|
188 |
+
z = float(line[47:54])
|
189 |
+
coordsTMP+=[[x,y,z]]
|
190 |
+
|
191 |
+
elif line[:6] == "HETATM" and keep_hetatm:
|
192 |
+
if line[17:20].strip()!="GTP":
|
193 |
+
continue
|
194 |
+
x = float(line[30:38])
|
195 |
+
y = float(line[38:46])
|
196 |
+
z = float(line[47:54])
|
197 |
+
resnum = int(line[22:26])
|
198 |
+
coordsTMP += [[x, y, z]]
|
199 |
+
atnameHet = line[12:16].strip()
|
200 |
+
atomNamesTMP += ["HET_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
|
201 |
+
coords+=[torch.tensor(coordsTMP)]
|
202 |
+
atomNames += [atomNamesTMP]
|
203 |
+
|
204 |
+
return torch.torch.nn.utils.rnn.pad_sequence(coords, batch_first=True, padding_value=PADDING_INDEX), atomNames, pdbname, pdb_num
|
205 |
+
|
206 |
+
|
207 |
+
def atomlistToChannels(atomNames, hashing="Element_Hashing", device="cpu"):
|
208 |
+
"""
|
209 |
+
function to get channels from atom names (obtained parsing the pdb files with the parsePDB function)
|
210 |
+
|
211 |
+
Parameters
|
212 |
+
----------
|
213 |
+
atomNames : list
|
214 |
+
atom names obtained parsing the pdb files with the parsePDB function
|
215 |
+
|
216 |
+
hashing : "TPL_Hashing" or "Element_Hashing" or dict
|
217 |
+
define which atoms are grouped together. You can use two default hashings or build your own hashing:
|
218 |
+
|
219 |
+
TPL_Hashing: uses the hashing of torch protein library (https://github.com/lupoglaz/TorchProteinLibrary)
|
220 |
+
Element_Hashing: groups atoms in accordnce with the element only: C -> 0, N -> 1, O ->2, P ->3, S- >4, H ->5, everything else ->6
|
221 |
+
|
222 |
+
Alternatively, if you are not happy with the default hashings, you can build a dictionary of dictionaries that defines the channel of every atom type in the pdb.
|
223 |
+
the first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
|
224 |
+
every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the channel (int) as value
|
225 |
+
|
226 |
+
for example, you can define the channels just based on the atom element as following:
|
227 |
+
{
|
228 |
+
'CYS': {'N': 1, 'O': 2, 'C': 0, 'SG': 3, 'CB': 0, 'CA': 0}, # channels for cysteine atoms
|
229 |
+
'GLY': {'N': 1, 'O': 2, 'C': 0, 'CA': 0}, # channels for glycine atom
|
230 |
+
...
|
231 |
+
'GOL': {'O1':2,'O2':2,'O3':2,'C1':0,'C2':0,'C3':0}, # channels for glycerol atom
|
232 |
+
...
|
233 |
+
}
|
234 |
+
|
235 |
+
The default encoding is the one that assigns a different channel to each element
|
236 |
+
|
237 |
+
other encodings can be found in sources/hashings.py
|
238 |
+
|
239 |
+
device : torch.device
|
240 |
+
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
|
241 |
+
Returns
|
242 |
+
-------
|
243 |
+
coords : torch.Tensor
|
244 |
+
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
|
245 |
+
|
246 |
+
channels : torch.tensor
|
247 |
+
the channel of every atom. Shape (batch,numberOfAtoms)
|
248 |
+
|
249 |
+
"""
|
250 |
+
if hashing == "TPL_Hashing":
|
251 |
+
hashing = hashings.TPLatom_hash
|
252 |
+
|
253 |
+
elif hashing == "Element_Hashing":
|
254 |
+
hashing = hashings.elements_hash
|
255 |
+
else:
|
256 |
+
assert type(hashing) is dict
|
257 |
+
|
258 |
+
if type(hashing[list(hashing.keys())[0]]) == dict:
|
259 |
+
useResName = True
|
260 |
+
else:
|
261 |
+
useResName = False
|
262 |
+
assert type(hashing[list(hashing.keys())[0]]) == int
|
263 |
+
channels = []
|
264 |
+
for singleAtomList in atomNames:
|
265 |
+
haTMP = []
|
266 |
+
for i in singleAtomList:
|
267 |
+
resname = i.split("_")[0]
|
268 |
+
atName = i.split("_")[2]
|
269 |
+
# if resname=="HET":
|
270 |
+
# atName="HET"
|
271 |
+
if useResName:
|
272 |
+
if resname in hashing and atName in hashing[resname]:
|
273 |
+
haTMP += [hashing[resname][atName]]
|
274 |
+
else:
|
275 |
+
haTMP += [PADDING_INDEX]
|
276 |
+
print("missing ", resname, atName)
|
277 |
+
else:
|
278 |
+
if atName in hashing:
|
279 |
+
haTMP += [hashing[atName]]
|
280 |
+
elif atName[0] in hashing:
|
281 |
+
haTMP += [hashing[atName[0]]]
|
282 |
+
elif hashing == "Element_Hashing":
|
283 |
+
haTMP += [6]
|
284 |
+
else:
|
285 |
+
haTMP += [PADDING_INDEX]
|
286 |
+
print("missing ", resname, atName)
|
287 |
+
|
288 |
+
channels += [torch.tensor(haTMP, dtype=torch.float, device=device)]
|
289 |
+
channels = torch.torch.nn.utils.rnn.pad_sequence(channels, batch_first=True, padding_value=PADDING_INDEX)
|
290 |
+
return channels
|
291 |
+
|
292 |
+
|
293 |
+
def atomlistToRadius(atomList, hashing="FoldX_radius", device="cpu"):
|
294 |
+
"""
|
295 |
+
function to get radius from atom names (obtained parsing the pdb files with the parsePDB function)
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
atomNames : list
|
302 |
+
atom names obtained parsing the pdb files with the parsePDB function
|
303 |
+
hashing : FoldX_radius or dict
|
304 |
+
"FoldX_radius" provides the radius used by the FoldX force field
|
305 |
+
|
306 |
+
Alternatively, if you are not happy with the foldX radius, you can build a dictionary of dictionaries that defines the radius of every atom type in the pdb.
|
307 |
+
The first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
|
308 |
+
every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the radius (float) as value
|
309 |
+
|
310 |
+
for example, you can define the radius as following:
|
311 |
+
{
|
312 |
+
'CYS': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'SG': 1.7, 'CB': 1.7, 'CA': 1.7}, # radius for cysteine atoms
|
313 |
+
'GLY': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'CA': 1.7}, # radius for glycine atoms
|
314 |
+
...
|
315 |
+
'GOL': {'O1':1.37,'O2':1.37,'O3':1.37,'C1':1.7,'C2':1.7,'C3':1.7}, # radius for glycerol atoms
|
316 |
+
...
|
317 |
+
}
|
318 |
+
|
319 |
+
The default radius are the ones defined in FoldX
|
320 |
+
|
321 |
+
Radius default dictionary can be found in sources/hashings.py
|
322 |
+
|
323 |
+
device : torch.device
|
324 |
+
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
|
325 |
+
Returns
|
326 |
+
-------
|
327 |
+
coords : torch.Tensor
|
328 |
+
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
|
329 |
+
|
330 |
+
radius : torch.tensor
|
331 |
+
The radius of every atom. Shape (batch,numberOfAtoms)
|
332 |
+
|
333 |
+
"""
|
334 |
+
if hashing == "FoldX_radius":
|
335 |
+
hashing = hashings.radius
|
336 |
+
hahsingSomgleAtom = hashings.radiusSingleAtom
|
337 |
+
else:
|
338 |
+
assert type(hashing) is dict
|
339 |
+
|
340 |
+
radius = []
|
341 |
+
for singleAtomList in atomList:
|
342 |
+
haTMP = []
|
343 |
+
for i in singleAtomList:
|
344 |
+
resname = i.split("_")[0]
|
345 |
+
atName = i.split("_")[2]
|
346 |
+
if resname in hashing and atName in hashing[resname]:
|
347 |
+
haTMP += [hashing[resname][atName]]
|
348 |
+
elif atName[0] in hahsingSomgleAtom:
|
349 |
+
haTMP += [hahsingSomgleAtom[atName[0]]]
|
350 |
+
else:
|
351 |
+
haTMP += [1.0]
|
352 |
+
print("missing ", resname, atName)
|
353 |
+
radius += [torch.tensor(haTMP, dtype=torch.float, device=device)]
|
354 |
+
radius = torch.torch.nn.utils.rnn.pad_sequence(radius, batch_first=True, padding_value=PADDING_INDEX)
|
355 |
+
return radius
|
356 |
+
|
357 |
+
|
358 |
+
'''
|
359 |
+
def write_pdb(batchedCoords, atomNames , name=None, output_folder="outpdb/"): #I need to add the chain id
|
360 |
+
|
361 |
+
if name is None:
|
362 |
+
name = range(len(batchedCoords))
|
363 |
+
|
364 |
+
for struct in range(len(name)):
|
365 |
+
f = open(output_folder + str(name[struct]) + ".pdb", "w")
|
366 |
+
|
367 |
+
coords=batchedCoords[struct].data.numpy()
|
368 |
+
atname=atomNames[struct]
|
369 |
+
for i in range(len(coords)):
|
370 |
+
|
371 |
+
rnName = atname[i].split("_")[0]#hashings.resi_hash_inverse[resi_list[i]]
|
372 |
+
atName = atname[i].split("_")[2]#hashings.atom_hash_inverse[resi_list[i]][atom_list[i]]
|
373 |
+
pos = atname[i].split("_")[1]
|
374 |
+
chain = "A"
|
375 |
+
|
376 |
+
num = " " * (5 - len(str(i))) + str(i)
|
377 |
+
a_name = atName + " " * (4 - len(atName))
|
378 |
+
numres = " " * (4 - len(str(pos))) + str(pos)
|
379 |
+
|
380 |
+
x = round(float(coords[i][0]), 3)
|
381 |
+
sx = str(x)
|
382 |
+
while len(sx.split(".")[1]) < 3:
|
383 |
+
sx += "0"
|
384 |
+
x = " " * (8 - len(sx)) + sx
|
385 |
+
|
386 |
+
y = round(float(coords[i][1]), 3)
|
387 |
+
sy = str(y)
|
388 |
+
while len(sy.split(".")[1]) < 3:
|
389 |
+
sy += "0"
|
390 |
+
y = " " * (8 - len(sy)) + sy
|
391 |
+
|
392 |
+
z = round(float(coords[i][2]), 3)
|
393 |
+
sz = str(z)
|
394 |
+
while len(sz.split(".")[1]) < 3:
|
395 |
+
sz += "0"
|
396 |
+
z = " " * (8 - len(sz)) + sz
|
397 |
+
chain = " " * (2 - len(chain)) + chain
|
398 |
+
|
399 |
+
if rnName !="HET":
|
400 |
+
f.write("ATOM " + num + " " + a_name + "" + rnName + chain + numres + " " + x + y + z + " 1.00 64.10 " + atName[0] + "\n")
|
401 |
+
else:
|
402 |
+
f.write("HETATM" + num + " " + a_name + "" + rnName + chain + numres + " " + x + y + z + " 1.00 64.10 " + atName[0] + "\n")
|
403 |
+
'''
|