File size: 3,020 Bytes
1046ab8
 
 
1feb7d2
1046ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4602d1
 
1046ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f596fc
 
2859cf3
4682575
e7f5e2d
1046ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f3a91
1046ab8
 
 
504f017
1046ab8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from pyuul import VolumeMaker 
from pyuul import utils 
import os
import pathlib
from sklearn.cluster import KMeans
from collections import OrderedDict
import numpy as np
import pandas as pd
import random
import torch
import os
import shutil
import gradio as gr

# 设置随机数种子
def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
setup_seed(100)
device = "cuda"

def add_file_to_folder(new_file_path, folder):
    ls = os.listdir(new_file_path)
    for line in ls:
        filePath = os.path.join(new_file_path, line)
        if os.path.isfile(filePath):
            shutil.copy(filePath, folder)

def copy(files,folder):
    file = os.listdir(folder)
    for i in file:
        if i not in files:
            file_path = os.path.join(folder, i)
            os.remove(file_path)

def pyuul(folder,n_clusters):
    PDBFile = str(folder)  
    coords, atname, pdbname, pdb_num = utils.parsePDB(PDBFile) 
    atoms_channel = utils.atomlistToChannels(atname) 
    radius = utils.atomlistToRadius(atname) 

    PointCloudSurfaceObject = VolumeMaker.PointCloudVolume(device=device)

    coords = coords.to(device)
    radius = radius.to(device) 
    atoms_channel = atoms_channel.to(device) 

    SurfacePoitCloud = PointCloudSurfaceObject(coords, radius) 
    feature = SurfacePoitCloud.view(pdb_num,-1).cpu()
    
    kmean = KMeans(n_clusters=n_clusters,n_init=10,init="k-means++",random_state=100)
    y = kmean.fit_predict(feature)

    pairs = zip(pdbname, y)
    result_dict = {key: value for key, value in pairs}
    ligend_class = result_dict['ligend.pdb']

    sheet = []
    for key, value in result_dict.items():
        if value == ligend_class:
            sheet.append(key)
    return sheet

def kmeans(ligend,n_clusters,n_num):
    peptide_folder_path = pathlib.Path(__file__).parent.joinpath("peptide" )
    pdb_folder = pathlib.Path(__file__).parent.joinpath("temp")
    ligend_path = ligend.name
    shutil.copy(ligend_path,pdb_folder)
    n_num = int(n_num)
    for i in range(1,n_num+1):
        if i == 1:
            add_file_to_folder(peptide_folder_path,pdb_folder)
            output = pyuul(pdb_folder, n_clusters)
            copy(output,pdb_folder)
        else:      
            if pdb_folder != None:
                output = pyuul(pdb_folder, n_clusters)
                copy(output,pdb_folder)

    data = OrderedDict()
    data['Name'] = output
    data = pd.DataFrame(data)
    data.to_csv('outputs.csv', index=False)
    shutil.rmtree(pdb_folder)
    os.mkdir(pdb_folder) 
    return 'outputs.csv'
    
iface = gr.Interface(fn=kmeans,
                     inputs=["file",
                             gr.Textbox(label="n_clusters", placeholder="2", lines=1),
                             gr.Textbox(label="Times", placeholder="2", lines=1)
                             ],
                     outputs= "file"
                     )
iface.launch()