lewtun HF staff commited on
Commit
b8da65e
1 Parent(s): 7cfc852

Remove scratch notebook

Browse files
Files changed (1) hide show
  1. Untitled.ipynb +0 -1833
Untitled.ipynb DELETED
@@ -1,1833 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 89,
6
- "id": "c0cdda73-430c-4e18-bce4-b2218e2597b9",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "from datasets import load_dataset, get_dataset_config_names"
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": null,
16
- "id": "4981ce75-5d13-4fd2-b08f-af077066f7d3",
17
- "metadata": {},
18
- "outputs": [],
19
- "source": []
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": 32,
24
- "id": "13e20072-0304-424a-923d-ac31a1769e94",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "import os\n",
29
- "from datetime import datetime\n",
30
- "from pathlib import Path\n",
31
- "from re import sub\n",
32
- "\n",
33
- "import pandas as pd\n",
34
- "import requests\n",
35
- "import streamlit as st\n",
36
- "from datasets import get_dataset_config_names\n",
37
- "from dotenv import load_dotenv\n",
38
- "\n",
39
- "if Path(\".env\").is_file():\n",
40
- " load_dotenv(\".env\")\n",
41
- "\n",
42
- "auth_token = os.getenv(\"HF_HUB_TOKEN\")\n",
43
- "header = {\"Authorization\": \"Bearer \" + auth_token}\n",
44
- "\n",
45
- "TASKS = get_dataset_config_names(\"ought/raft\")\n",
46
- "# Split and capitalize the task names, e.g. banking_77 => Banking 77\n",
47
- "FORMATTED_TASK_NAMES = [\" \".join(t.capitalize() for t in task.split(\"_\")) for task in TASKS]\n",
48
- "\n",
49
- "\n",
50
- "def extract_tags(dataset):\n",
51
- " tags = {}\n",
52
- " for tag in dataset[\"tags\"]:\n",
53
- " k, v = tuple(tag.split(\":\", 1))\n",
54
- " tags[k] = v\n",
55
- " return tags\n",
56
- "\n",
57
- "\n",
58
- "def download_submissions():\n",
59
- " response = requests.get(\"http://huggingface.co/api/datasets\", headers=header)\n",
60
- " all_datasets = response.json()\n",
61
- "\n",
62
- " submissions = []\n",
63
- "\n",
64
- " for dataset in all_datasets:\n",
65
- " tags = extract_tags(dataset)\n",
66
- " if tags.get(\"benchmark\") == \"ought/raft\" and tags.get(\"type\") == \"evaluation\":\n",
67
- " submissions.append(dataset)\n",
68
- " return submissions\n",
69
- "\n",
70
- "\n",
71
- "def format_submissions(submissions):\n",
72
- " submission_data = {**{\"Submission\": []}, **{\"Date\": []}, **{t: [] for t in TASKS}}\n",
73
- "\n",
74
- " # TODO(lewtun): delete / filter all the junk repos from development\n",
75
- " # The following picks the latest submissions which adhere to the model card schema\n",
76
- " for submission in submissions:\n",
77
- " submission_id = submission[\"id\"]\n",
78
- " response = requests.get(\n",
79
- " f\"http://huggingface.co/api/datasets/{submission_id}?full=true\",\n",
80
- " headers=header,\n",
81
- " )\n",
82
- " data = response.json()\n",
83
- " card_data = data[\"card_data\"]\n",
84
- " submission_name = card_data[\"submission_dataset\"]\n",
85
- " submission_data[\"Submission\"].append(submission_name)\n",
86
- " submission_id = card_data[\"submission_id\"]\n",
87
- " timestamp = submission_id.split(\"-\")[-1]\n",
88
- " timestamp = pd.to_datetime(int(timestamp))\n",
89
- " submission_data[\"Date\"].append(datetime.date(timestamp))\n",
90
- "\n",
91
- " for task in card_data[\"results\"]:\n",
92
- " task_data = task[\"task\"]\n",
93
- " task_name = task_data[\"name\"]\n",
94
- " score = task_data[\"metrics\"][0][\"value\"]\n",
95
- " submission_data[task_name].append(score)\n",
96
- "\n",
97
- " df = pd.DataFrame(submission_data)\n",
98
- " df.insert(2, \"Overall\", df[TASKS].mean(axis=1))\n",
99
- " df = df.copy().sort_values(\"Overall\", ascending=False).reset_index().rename(columns={\"index\": \"Rank\"})\n",
100
- " df.rename(columns={k: v for k, v in zip(TASKS, FORMATTED_TASK_NAMES)}, inplace=True)\n",
101
- " return df"
102
- ]
103
- },
104
- {
105
- "cell_type": "code",
106
- "execution_count": 28,
107
- "id": "8dccc419-7b18-4a10-a4bf-2d69cc3b5888",
108
- "metadata": {},
109
- "outputs": [],
110
- "source": [
111
- "submissions = download_submissions()"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": 29,
117
- "id": "934ea3b9-76dd-4d8f-a62d-8e2fa5959111",
118
- "metadata": {},
119
- "outputs": [
120
- {
121
- "data": {
122
- "text/plain": [
123
- "2"
124
- ]
125
- },
126
- "execution_count": 29,
127
- "metadata": {},
128
- "output_type": "execute_result"
129
- }
130
- ],
131
- "source": [
132
- "len(submissions)"
133
- ]
134
- },
135
- {
136
- "cell_type": "code",
137
- "execution_count": 34,
138
- "id": "c3803890-d664-4d24-86bc-8fb095cad40a",
139
- "metadata": {},
140
- "outputs": [],
141
- "source": [
142
- "df = format_submissions(submissions)"
143
- ]
144
- },
145
- {
146
- "cell_type": "code",
147
- "execution_count": 35,
148
- "id": "2de6f903-c327-42b6-a1ca-a530a62cc412",
149
- "metadata": {},
150
- "outputs": [
151
- {
152
- "data": {
153
- "text/html": [
154
- "<div>\n",
155
- "<style scoped>\n",
156
- " .dataframe tbody tr th:only-of-type {\n",
157
- " vertical-align: middle;\n",
158
- " }\n",
159
- "\n",
160
- " .dataframe tbody tr th {\n",
161
- " vertical-align: top;\n",
162
- " }\n",
163
- "\n",
164
- " .dataframe thead th {\n",
165
- " text-align: right;\n",
166
- " }\n",
167
- "</style>\n",
168
- "<table border=\"1\" class=\"dataframe\">\n",
169
- " <thead>\n",
170
- " <tr style=\"text-align: right;\">\n",
171
- " <th></th>\n",
172
- " <th>Rank</th>\n",
173
- " <th>Submission</th>\n",
174
- " <th>Date</th>\n",
175
- " <th>Overall</th>\n",
176
- " <th>Ade Corpus V2</th>\n",
177
- " <th>Banking 77</th>\n",
178
- " <th>Terms Of Service</th>\n",
179
- " <th>Tai Safety Research</th>\n",
180
- " <th>Neurips Impact Statement Risks</th>\n",
181
- " <th>Overruling</th>\n",
182
- " <th>Systematic Review Inclusion</th>\n",
183
- " <th>One Stop English</th>\n",
184
- " <th>Tweet Eval Hate</th>\n",
185
- " <th>Twitter Complaints</th>\n",
186
- " <th>Semiconductor Org Types</th>\n",
187
- " </tr>\n",
188
- " </thead>\n",
189
- " <tbody>\n",
190
- " <tr>\n",
191
- " <th>0</th>\n",
192
- " <td>1</td>\n",
193
- " <td>Human baseline (crowdsourced)</td>\n",
194
- " <td>2021-08-27</td>\n",
195
- " <td>0.735273</td>\n",
196
- " <td>0.830</td>\n",
197
- " <td>0.607</td>\n",
198
- " <td>0.627</td>\n",
199
- " <td>0.609</td>\n",
200
- " <td>0.857</td>\n",
201
- " <td>0.917</td>\n",
202
- " <td>0.468</td>\n",
203
- " <td>0.646</td>\n",
204
- " <td>0.722</td>\n",
205
- " <td>0.897</td>\n",
206
- " <td>0.908</td>\n",
207
- " </tr>\n",
208
- " <tr>\n",
209
- " <th>1</th>\n",
210
- " <td>0</td>\n",
211
- " <td>GPT-3 baseline</td>\n",
212
- " <td>2021-08-27</td>\n",
213
- " <td>0.631000</td>\n",
214
- " <td>0.688</td>\n",
215
- " <td>0.295</td>\n",
216
- " <td>0.579</td>\n",
217
- " <td>0.667</td>\n",
218
- " <td>0.595</td>\n",
219
- " <td>0.940</td>\n",
220
- " <td>0.535</td>\n",
221
- " <td>0.407</td>\n",
222
- " <td>0.529</td>\n",
223
- " <td>0.822</td>\n",
224
- " <td>0.884</td>\n",
225
- " </tr>\n",
226
- " </tbody>\n",
227
- "</table>\n",
228
- "</div>"
229
- ],
230
- "text/plain": [
231
- " Rank Submission Date Overall Ade Corpus V2 \\\n",
232
- "0 1 Human baseline (crowdsourced) 2021-08-27 0.735273 0.830 \n",
233
- "1 0 GPT-3 baseline 2021-08-27 0.631000 0.688 \n",
234
- "\n",
235
- " Banking 77 Terms Of Service Tai Safety Research \\\n",
236
- "0 0.607 0.627 0.609 \n",
237
- "1 0.295 0.579 0.667 \n",
238
- "\n",
239
- " Neurips Impact Statement Risks Overruling Systematic Review Inclusion \\\n",
240
- "0 0.857 0.917 0.468 \n",
241
- "1 0.595 0.940 0.535 \n",
242
- "\n",
243
- " One Stop English Tweet Eval Hate Twitter Complaints \\\n",
244
- "0 0.646 0.722 0.897 \n",
245
- "1 0.407 0.529 0.822 \n",
246
- "\n",
247
- " Semiconductor Org Types \n",
248
- "0 0.908 \n",
249
- "1 0.884 "
250
- ]
251
- },
252
- "execution_count": 35,
253
- "metadata": {},
254
- "output_type": "execute_result"
255
- }
256
- ],
257
- "source": [
258
- "df"
259
- ]
260
- },
261
- {
262
- "cell_type": "code",
263
- "execution_count": 45,
264
- "id": "ca6ba762-047f-4074-a5c3-b4168c13d398",
265
- "metadata": {},
266
- "outputs": [
267
- {
268
- "data": {
269
- "text/html": [
270
- "<style type=\"text/css\">\n",
271
- "</style>\n",
272
- "<table id=\"T_b6d1f_\">\n",
273
- " <thead>\n",
274
- " <tr>\n",
275
- " <th class=\"blank level0\" >&nbsp;</th>\n",
276
- " <th class=\"col_heading level0 col0\" >Rank</th>\n",
277
- " <th class=\"col_heading level0 col1\" >Submission</th>\n",
278
- " <th class=\"col_heading level0 col2\" >Date</th>\n",
279
- " <th class=\"col_heading level0 col3\" >Overall</th>\n",
280
- " <th class=\"col_heading level0 col4\" >Ade Corpus V2</th>\n",
281
- " <th class=\"col_heading level0 col5\" >Banking 77</th>\n",
282
- " <th class=\"col_heading level0 col6\" >Terms Of Service</th>\n",
283
- " <th class=\"col_heading level0 col7\" >Tai Safety Research</th>\n",
284
- " <th class=\"col_heading level0 col8\" >Neurips Impact Statement Risks</th>\n",
285
- " <th class=\"col_heading level0 col9\" >Overruling</th>\n",
286
- " <th class=\"col_heading level0 col10\" >Systematic Review Inclusion</th>\n",
287
- " <th class=\"col_heading level0 col11\" >One Stop English</th>\n",
288
- " <th class=\"col_heading level0 col12\" >Tweet Eval Hate</th>\n",
289
- " <th class=\"col_heading level0 col13\" >Twitter Complaints</th>\n",
290
- " <th class=\"col_heading level0 col14\" >Semiconductor Org Types</th>\n",
291
- " </tr>\n",
292
- " </thead>\n",
293
- " <tbody>\n",
294
- " <tr>\n",
295
- " <th id=\"T_b6d1f_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
296
- " <td id=\"T_b6d1f_row0_col0\" class=\"data row0 col0\" >1</td>\n",
297
- " <td id=\"T_b6d1f_row0_col1\" class=\"data row0 col1\" >Human baseline (crowdsourced)</td>\n",
298
- " <td id=\"T_b6d1f_row0_col2\" class=\"data row0 col2\" >2021-08-27</td>\n",
299
- " <td id=\"T_b6d1f_row0_col3\" class=\"data row0 col3\" >0.735</td>\n",
300
- " <td id=\"T_b6d1f_row0_col4\" class=\"data row0 col4\" >0.830</td>\n",
301
- " <td id=\"T_b6d1f_row0_col5\" class=\"data row0 col5\" >0.607</td>\n",
302
- " <td id=\"T_b6d1f_row0_col6\" class=\"data row0 col6\" >0.627</td>\n",
303
- " <td id=\"T_b6d1f_row0_col7\" class=\"data row0 col7\" >0.609</td>\n",
304
- " <td id=\"T_b6d1f_row0_col8\" class=\"data row0 col8\" >0.857</td>\n",
305
- " <td id=\"T_b6d1f_row0_col9\" class=\"data row0 col9\" >0.917</td>\n",
306
- " <td id=\"T_b6d1f_row0_col10\" class=\"data row0 col10\" >0.468</td>\n",
307
- " <td id=\"T_b6d1f_row0_col11\" class=\"data row0 col11\" >0.646</td>\n",
308
- " <td id=\"T_b6d1f_row0_col12\" class=\"data row0 col12\" >0.722</td>\n",
309
- " <td id=\"T_b6d1f_row0_col13\" class=\"data row0 col13\" >0.897</td>\n",
310
- " <td id=\"T_b6d1f_row0_col14\" class=\"data row0 col14\" >0.908</td>\n",
311
- " </tr>\n",
312
- " <tr>\n",
313
- " <th id=\"T_b6d1f_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
314
- " <td id=\"T_b6d1f_row1_col0\" class=\"data row1 col0\" >0</td>\n",
315
- " <td id=\"T_b6d1f_row1_col1\" class=\"data row1 col1\" >GPT-3 baseline</td>\n",
316
- " <td id=\"T_b6d1f_row1_col2\" class=\"data row1 col2\" >2021-08-27</td>\n",
317
- " <td id=\"T_b6d1f_row1_col3\" class=\"data row1 col3\" >0.631</td>\n",
318
- " <td id=\"T_b6d1f_row1_col4\" class=\"data row1 col4\" >0.688</td>\n",
319
- " <td id=\"T_b6d1f_row1_col5\" class=\"data row1 col5\" >0.295</td>\n",
320
- " <td id=\"T_b6d1f_row1_col6\" class=\"data row1 col6\" >0.579</td>\n",
321
- " <td id=\"T_b6d1f_row1_col7\" class=\"data row1 col7\" >0.667</td>\n",
322
- " <td id=\"T_b6d1f_row1_col8\" class=\"data row1 col8\" >0.595</td>\n",
323
- " <td id=\"T_b6d1f_row1_col9\" class=\"data row1 col9\" >0.940</td>\n",
324
- " <td id=\"T_b6d1f_row1_col10\" class=\"data row1 col10\" >0.535</td>\n",
325
- " <td id=\"T_b6d1f_row1_col11\" class=\"data row1 col11\" >0.407</td>\n",
326
- " <td id=\"T_b6d1f_row1_col12\" class=\"data row1 col12\" >0.529</td>\n",
327
- " <td id=\"T_b6d1f_row1_col13\" class=\"data row1 col13\" >0.822</td>\n",
328
- " <td id=\"T_b6d1f_row1_col14\" class=\"data row1 col14\" >0.884</td>\n",
329
- " </tr>\n",
330
- " </tbody>\n",
331
- "</table>\n"
332
- ],
333
- "text/plain": [
334
- "<pandas.io.formats.style.Styler at 0x7fba946d44c0>"
335
- ]
336
- },
337
- "execution_count": 45,
338
- "metadata": {},
339
- "output_type": "execute_result"
340
- }
341
- ],
342
- "source": [
343
- "df.style.format(precision=3)"
344
- ]
345
- },
346
- {
347
- "cell_type": "code",
348
- "execution_count": 47,
349
- "id": "094e757c-1c6a-4d01-abb1-872face8c72b",
350
- "metadata": {},
351
- "outputs": [],
352
- "source": [
353
- "df2 = df.assign(hack=\"\").set_index(\"hack\")"
354
- ]
355
- },
356
- {
357
- "cell_type": "code",
358
- "execution_count": 48,
359
- "id": "2ff434e2-5bf6-453f-8470-28c7b1034154",
360
- "metadata": {},
361
- "outputs": [
362
- {
363
- "data": {
364
- "text/html": [
365
- "<style type=\"text/css\">\n",
366
- "</style>\n",
367
- "<table id=\"T_59a1f_\">\n",
368
- " <thead>\n",
369
- " <tr>\n",
370
- " <th class=\"blank level0\" >&nbsp;</th>\n",
371
- " <th class=\"col_heading level0 col0\" >Rank</th>\n",
372
- " <th class=\"col_heading level0 col1\" >Submission</th>\n",
373
- " <th class=\"col_heading level0 col2\" >Date</th>\n",
374
- " <th class=\"col_heading level0 col3\" >Overall</th>\n",
375
- " <th class=\"col_heading level0 col4\" >Ade Corpus V2</th>\n",
376
- " <th class=\"col_heading level0 col5\" >Banking 77</th>\n",
377
- " <th class=\"col_heading level0 col6\" >Terms Of Service</th>\n",
378
- " <th class=\"col_heading level0 col7\" >Tai Safety Research</th>\n",
379
- " <th class=\"col_heading level0 col8\" >Neurips Impact Statement Risks</th>\n",
380
- " <th class=\"col_heading level0 col9\" >Overruling</th>\n",
381
- " <th class=\"col_heading level0 col10\" >Systematic Review Inclusion</th>\n",
382
- " <th class=\"col_heading level0 col11\" >One Stop English</th>\n",
383
- " <th class=\"col_heading level0 col12\" >Tweet Eval Hate</th>\n",
384
- " <th class=\"col_heading level0 col13\" >Twitter Complaints</th>\n",
385
- " <th class=\"col_heading level0 col14\" >Semiconductor Org Types</th>\n",
386
- " </tr>\n",
387
- " <tr>\n",
388
- " <th class=\"index_name level0\" >hack</th>\n",
389
- " <th class=\"blank col0\" >&nbsp;</th>\n",
390
- " <th class=\"blank col1\" >&nbsp;</th>\n",
391
- " <th class=\"blank col2\" >&nbsp;</th>\n",
392
- " <th class=\"blank col3\" >&nbsp;</th>\n",
393
- " <th class=\"blank col4\" >&nbsp;</th>\n",
394
- " <th class=\"blank col5\" >&nbsp;</th>\n",
395
- " <th class=\"blank col6\" >&nbsp;</th>\n",
396
- " <th class=\"blank col7\" >&nbsp;</th>\n",
397
- " <th class=\"blank col8\" >&nbsp;</th>\n",
398
- " <th class=\"blank col9\" >&nbsp;</th>\n",
399
- " <th class=\"blank col10\" >&nbsp;</th>\n",
400
- " <th class=\"blank col11\" >&nbsp;</th>\n",
401
- " <th class=\"blank col12\" >&nbsp;</th>\n",
402
- " <th class=\"blank col13\" >&nbsp;</th>\n",
403
- " <th class=\"blank col14\" >&nbsp;</th>\n",
404
- " </tr>\n",
405
- " </thead>\n",
406
- " <tbody>\n",
407
- " <tr>\n",
408
- " <th id=\"T_59a1f_level0_row0\" class=\"row_heading level0 row0\" ></th>\n",
409
- " <td id=\"T_59a1f_row0_col0\" class=\"data row0 col0\" >1</td>\n",
410
- " <td id=\"T_59a1f_row0_col1\" class=\"data row0 col1\" >Human baseline (crowdsourced)</td>\n",
411
- " <td id=\"T_59a1f_row0_col2\" class=\"data row0 col2\" >2021-08-27</td>\n",
412
- " <td id=\"T_59a1f_row0_col3\" class=\"data row0 col3\" >0.735</td>\n",
413
- " <td id=\"T_59a1f_row0_col4\" class=\"data row0 col4\" >0.830</td>\n",
414
- " <td id=\"T_59a1f_row0_col5\" class=\"data row0 col5\" >0.607</td>\n",
415
- " <td id=\"T_59a1f_row0_col6\" class=\"data row0 col6\" >0.627</td>\n",
416
- " <td id=\"T_59a1f_row0_col7\" class=\"data row0 col7\" >0.609</td>\n",
417
- " <td id=\"T_59a1f_row0_col8\" class=\"data row0 col8\" >0.857</td>\n",
418
- " <td id=\"T_59a1f_row0_col9\" class=\"data row0 col9\" >0.917</td>\n",
419
- " <td id=\"T_59a1f_row0_col10\" class=\"data row0 col10\" >0.468</td>\n",
420
- " <td id=\"T_59a1f_row0_col11\" class=\"data row0 col11\" >0.646</td>\n",
421
- " <td id=\"T_59a1f_row0_col12\" class=\"data row0 col12\" >0.722</td>\n",
422
- " <td id=\"T_59a1f_row0_col13\" class=\"data row0 col13\" >0.897</td>\n",
423
- " <td id=\"T_59a1f_row0_col14\" class=\"data row0 col14\" >0.908</td>\n",
424
- " </tr>\n",
425
- " <tr>\n",
426
- " <th id=\"T_59a1f_level0_row1\" class=\"row_heading level0 row1\" ></th>\n",
427
- " <td id=\"T_59a1f_row1_col0\" class=\"data row1 col0\" >0</td>\n",
428
- " <td id=\"T_59a1f_row1_col1\" class=\"data row1 col1\" >GPT-3 baseline</td>\n",
429
- " <td id=\"T_59a1f_row1_col2\" class=\"data row1 col2\" >2021-08-27</td>\n",
430
- " <td id=\"T_59a1f_row1_col3\" class=\"data row1 col3\" >0.631</td>\n",
431
- " <td id=\"T_59a1f_row1_col4\" class=\"data row1 col4\" >0.688</td>\n",
432
- " <td id=\"T_59a1f_row1_col5\" class=\"data row1 col5\" >0.295</td>\n",
433
- " <td id=\"T_59a1f_row1_col6\" class=\"data row1 col6\" >0.579</td>\n",
434
- " <td id=\"T_59a1f_row1_col7\" class=\"data row1 col7\" >0.667</td>\n",
435
- " <td id=\"T_59a1f_row1_col8\" class=\"data row1 col8\" >0.595</td>\n",
436
- " <td id=\"T_59a1f_row1_col9\" class=\"data row1 col9\" >0.940</td>\n",
437
- " <td id=\"T_59a1f_row1_col10\" class=\"data row1 col10\" >0.535</td>\n",
438
- " <td id=\"T_59a1f_row1_col11\" class=\"data row1 col11\" >0.407</td>\n",
439
- " <td id=\"T_59a1f_row1_col12\" class=\"data row1 col12\" >0.529</td>\n",
440
- " <td id=\"T_59a1f_row1_col13\" class=\"data row1 col13\" >0.822</td>\n",
441
- " <td id=\"T_59a1f_row1_col14\" class=\"data row1 col14\" >0.884</td>\n",
442
- " </tr>\n",
443
- " </tbody>\n",
444
- "</table>\n"
445
- ],
446
- "text/plain": [
447
- "<pandas.io.formats.style.Styler at 0x7fba946d4910>"
448
- ]
449
- },
450
- "execution_count": 48,
451
- "metadata": {},
452
- "output_type": "execute_result"
453
- }
454
- ],
455
- "source": [
456
- "df2.style.format(precision=3)"
457
- ]
458
- },
459
- {
460
- "cell_type": "code",
461
- "execution_count": 186,
462
- "id": "8be02c77-bda3-499b-9ac4-d50ec35644a5",
463
- "metadata": {},
464
- "outputs": [],
465
- "source": [
466
- "for submission in submissions[-1:]:\n",
467
- " submission_id = submission[\"id\"]\n",
468
- " response = requests.get(\n",
469
- " f\"http://huggingface.co/api/datasets/{submission_id}?full=true\",\n",
470
- " headers=header,\n",
471
- " )\n",
472
- " data = response.json()"
473
- ]
474
- },
475
- {
476
- "cell_type": "code",
477
- "execution_count": 188,
478
- "id": "7ab07904-0f7e-401b-96f8-3558433e479a",
479
- "metadata": {},
480
- "outputs": [
481
- {
482
- "data": {
483
- "text/plain": [
484
- "{'Submission': [], 'foo': [], 'bar': []}"
485
- ]
486
- },
487
- "execution_count": 188,
488
- "metadata": {},
489
- "output_type": "execute_result"
490
- }
491
- ],
492
- "source": [
493
- "{**{\"Submission\": []}, **{\"foo\":[]}, **{\"bar\": []}}"
494
- ]
495
- },
496
- {
497
- "cell_type": "code",
498
- "execution_count": 191,
499
- "id": "69ffb778-09cf-4eb8-ab95-739700d68420",
500
- "metadata": {},
501
- "outputs": [
502
- {
503
- "data": {
504
- "text/plain": [
505
- "'f5a21c3fcb58ac17c8a47cfffd509b55cbad7ccf-1629986165000000000'"
506
- ]
507
- },
508
- "execution_count": 191,
509
- "metadata": {},
510
- "output_type": "execute_result"
511
- }
512
- ],
513
- "source": [
514
- "sub_id = data[\"card_data\"][\"submission_id\"]\n",
515
- "sub_id"
516
- ]
517
- },
518
- {
519
- "cell_type": "code",
520
- "execution_count": 195,
521
- "id": "f7c3e8c0-68c7-4bad-802b-1b39703e100d",
522
- "metadata": {},
523
- "outputs": [
524
- {
525
- "data": {
526
- "text/plain": [
527
- "'1629986165000000000'"
528
- ]
529
- },
530
- "execution_count": 195,
531
- "metadata": {},
532
- "output_type": "execute_result"
533
- }
534
- ],
535
- "source": [
536
- "t = sub_id.split(\"-\")[-1]\n",
537
- "t"
538
- ]
539
- },
540
- {
541
- "cell_type": "code",
542
- "execution_count": 197,
543
- "id": "34a7483c-0b00-42a7-99b9-ee6bdf34048a",
544
- "metadata": {},
545
- "outputs": [
546
- {
547
- "data": {
548
- "text/plain": [
549
- "Timestamp('2021-08-26 13:56:05')"
550
- ]
551
- },
552
- "execution_count": 197,
553
- "metadata": {},
554
- "output_type": "execute_result"
555
- }
556
- ],
557
- "source": [
558
- "d = pd.to_datetime(int(t))\n",
559
- "d"
560
- ]
561
- },
562
- {
563
- "cell_type": "code",
564
- "execution_count": 201,
565
- "id": "95f1ecff-025f-4b42-8761-2c0964dfac5f",
566
- "metadata": {},
567
- "outputs": [],
568
- "source": [
569
- "import datetime"
570
- ]
571
- },
572
- {
573
- "cell_type": "code",
574
- "execution_count": 205,
575
- "id": "c606cfea-165d-4b58-ba37-6fc9b06795cf",
576
- "metadata": {},
577
- "outputs": [
578
- {
579
- "data": {
580
- "text/html": [
581
- "<div>\n",
582
- "<style scoped>\n",
583
- " .dataframe tbody tr th:only-of-type {\n",
584
- " vertical-align: middle;\n",
585
- " }\n",
586
- "\n",
587
- " .dataframe tbody tr th {\n",
588
- " vertical-align: top;\n",
589
- " }\n",
590
- "\n",
591
- " .dataframe thead th {\n",
592
- " text-align: right;\n",
593
- " }\n",
594
- "</style>\n",
595
- "<table border=\"1\" class=\"dataframe\">\n",
596
- " <thead>\n",
597
- " <tr style=\"text-align: right;\">\n",
598
- " <th></th>\n",
599
- " <th>d</th>\n",
600
- " </tr>\n",
601
- " </thead>\n",
602
- " <tbody>\n",
603
- " <tr>\n",
604
- " <th>0</th>\n",
605
- " <td>2021-08-26</td>\n",
606
- " </tr>\n",
607
- " </tbody>\n",
608
- "</table>\n",
609
- "</div>"
610
- ],
611
- "text/plain": [
612
- " d\n",
613
- "0 2021-08-26"
614
- ]
615
- },
616
- "execution_count": 205,
617
- "metadata": {},
618
- "output_type": "execute_result"
619
- }
620
- ],
621
- "source": [
622
- "pd.DataFrame({\"d\":[datetime.datetime.date(d)]})"
623
- ]
624
- },
625
- {
626
- "cell_type": "code",
627
- "execution_count": 147,
628
- "id": "eebefd5a-6451-44b9-bc0f-d0663f321e34",
629
- "metadata": {},
630
- "outputs": [],
631
- "source": [
632
- "timestamp = data[\"lastModified\"]"
633
- ]
634
- },
635
- {
636
- "cell_type": "code",
637
- "execution_count": 149,
638
- "id": "bf663ca3-12e8-4178-9aef-aba46621477a",
639
- "metadata": {},
640
- "outputs": [],
641
- "source": [
642
- "import pandas as pd"
643
- ]
644
- },
645
- {
646
- "cell_type": "code",
647
- "execution_count": 160,
648
- "id": "4723aeb6-3993-49b1-b779-c1394b54d776",
649
- "metadata": {},
650
- "outputs": [
651
- {
652
- "data": {
653
- "text/plain": [
654
- "Timestamp('2021-08-04 22:52:57+0000', tz='UTC')"
655
- ]
656
- },
657
- "execution_count": 160,
658
- "metadata": {},
659
- "output_type": "execute_result"
660
- }
661
- ],
662
- "source": [
663
- "t = pd.to_datetime(timestamp)\n",
664
- "t"
665
- ]
666
- },
667
- {
668
- "cell_type": "code",
669
- "execution_count": 157,
670
- "id": "cbcc2bf8-e2c8-449c-9f00-38ed80e46ae0",
671
- "metadata": {},
672
- "outputs": [
673
- {
674
- "data": {
675
- "text/plain": [
676
- "'2021-08-04T22:52:57.000Z'"
677
- ]
678
- },
679
- "execution_count": 157,
680
- "metadata": {},
681
- "output_type": "execute_result"
682
- }
683
- ],
684
- "source": [
685
- "timestamp"
686
- ]
687
- },
688
- {
689
- "cell_type": "code",
690
- "execution_count": 161,
691
- "id": "177574a9-327e-4999-a1db-c316bb741c8c",
692
- "metadata": {},
693
- "outputs": [],
694
- "source": [
695
- "t_int = int(t.timestamp() * 10 **9)"
696
- ]
697
- },
698
- {
699
- "cell_type": "code",
700
- "execution_count": 162,
701
- "id": "b3aa4f70-50af-47b3-a492-c77f65266a5b",
702
- "metadata": {},
703
- "outputs": [
704
- {
705
- "data": {
706
- "text/plain": [
707
- "Timestamp('2021-08-04 22:52:57')"
708
- ]
709
- },
710
- "execution_count": 162,
711
- "metadata": {},
712
- "output_type": "execute_result"
713
- }
714
- ],
715
- "source": [
716
- "pd.to_datetime(t_int)"
717
- ]
718
- },
719
- {
720
- "cell_type": "code",
721
- "execution_count": 96,
722
- "id": "ae7c9100-a630-4b4e-a060-331914f86055",
723
- "metadata": {},
724
- "outputs": [],
725
- "source": [
726
- "submissions = download_submissions()"
727
- ]
728
- },
729
- {
730
- "cell_type": "code",
731
- "execution_count": 97,
732
- "id": "831077a1-7f44-4d31-94b3-49257a62c5f7",
733
- "metadata": {},
734
- "outputs": [
735
- {
736
- "data": {
737
- "text/plain": [
738
- "16"
739
- ]
740
- },
741
- "execution_count": 97,
742
- "metadata": {},
743
- "output_type": "execute_result"
744
- }
745
- ],
746
- "source": [
747
- "len(submissions)"
748
- ]
749
- },
750
- {
751
- "cell_type": "code",
752
- "execution_count": 35,
753
- "id": "4a8a9ff9-7f94-4abb-8194-9d570ad2216b",
754
- "metadata": {},
755
- "outputs": [
756
- {
757
- "data": {
758
- "text/plain": [
759
- "[{'id': 'autonlp/autonlp-benchmark-raft-ought__raft-ought__raft-dummy-predictions-642',\n",
760
- " 'private': True,\n",
761
- " 'tags': ['benchmark:ought/raft',\n",
762
- " 'type:evaluation',\n",
763
- " 'submission_dataset:ought/raft-dummy-predictions',\n",
764
- " 'tags:autonlp',\n",
765
- " 'tags:evaluation',\n",
766
- " 'tags:benchmark'],\n",
767
- " 'author': 'autonlp',\n",
768
- " 'key': ''}]"
769
- ]
770
- },
771
- "execution_count": 35,
772
- "metadata": {},
773
- "output_type": "execute_result"
774
- }
775
- ],
776
- "source": [
777
- "submissions[-1:]"
778
- ]
779
- },
780
- {
781
- "cell_type": "code",
782
- "execution_count": 98,
783
- "id": "2d6e56cb-fca3-4e9e-9a8b-9d2e26816773",
784
- "metadata": {},
785
- "outputs": [],
786
- "source": [
787
- "df = format_submissions(submissions[-2:])"
788
- ]
789
- },
790
- {
791
- "cell_type": "code",
792
- "execution_count": 109,
793
- "id": "7d8a3402-f7b8-4edb-8d1e-afb704dc3c67",
794
- "metadata": {},
795
- "outputs": [
796
- {
797
- "data": {
798
- "text/html": [
799
- "<div>\n",
800
- "<style scoped>\n",
801
- " .dataframe tbody tr th:only-of-type {\n",
802
- " vertical-align: middle;\n",
803
- " }\n",
804
- "\n",
805
- " .dataframe tbody tr th {\n",
806
- " vertical-align: top;\n",
807
- " }\n",
808
- "\n",
809
- " .dataframe thead th {\n",
810
- " text-align: right;\n",
811
- " }\n",
812
- "</style>\n",
813
- "<table border=\"1\" class=\"dataframe\">\n",
814
- " <thead>\n",
815
- " <tr style=\"text-align: right;\">\n",
816
- " <th></th>\n",
817
- " <th>Submission</th>\n",
818
- " <th>Overall</th>\n",
819
- " <th>banking_77</th>\n",
820
- " <th>medical_subdomain_of_clinical_notes</th>\n",
821
- " <th>overruling</th>\n",
822
- " <th>gpai_initiatives</th>\n",
823
- " <th>semiconductor_org_types</th>\n",
824
- " <th>twitter_complaints</th>\n",
825
- " <th>neurips_impact_statement_risks</th>\n",
826
- " <th>systematic_review_inclusion</th>\n",
827
- " <th>terms_of_service</th>\n",
828
- " <th>tai_safety_research</th>\n",
829
- " <th>one_stop_english</th>\n",
830
- " </tr>\n",
831
- " </thead>\n",
832
- " <tbody>\n",
833
- " <tr>\n",
834
- " <th>1</th>\n",
835
- " <td>lewtun/my-raft-dummy-predictions</td>\n",
836
- " <td>0.605079</td>\n",
837
- " <td>0.948903</td>\n",
838
- " <td>0.716526</td>\n",
839
- " <td>0.064395</td>\n",
840
- " <td>0.529422</td>\n",
841
- " <td>0.643723</td>\n",
842
- " <td>0.873478</td>\n",
843
- " <td>0.756919</td>\n",
844
- " <td>0.381609</td>\n",
845
- " <td>0.461302</td>\n",
846
- " <td>0.624133</td>\n",
847
- " <td>0.655457</td>\n",
848
- " </tr>\n",
849
- " <tr>\n",
850
- " <th>0</th>\n",
851
- " <td>ought/raft-dummy-predictions</td>\n",
852
- " <td>0.407345</td>\n",
853
- " <td>0.009504</td>\n",
854
- " <td>0.591213</td>\n",
855
- " <td>0.552390</td>\n",
856
- " <td>0.594769</td>\n",
857
- " <td>0.339822</td>\n",
858
- " <td>0.728116</td>\n",
859
- " <td>0.878378</td>\n",
860
- " <td>0.291842</td>\n",
861
- " <td>0.144772</td>\n",
862
- " <td>0.089622</td>\n",
863
- " <td>0.260366</td>\n",
864
- " </tr>\n",
865
- " </tbody>\n",
866
- "</table>\n",
867
- "</div>"
868
- ],
869
- "text/plain": [
870
- " Submission Overall banking_77 \\\n",
871
- "1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
872
- "0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
873
- "\n",
874
- " medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
875
- "1 0.716526 0.064395 0.529422 \n",
876
- "0 0.591213 0.552390 0.594769 \n",
877
- "\n",
878
- " semiconductor_org_types twitter_complaints \\\n",
879
- "1 0.643723 0.873478 \n",
880
- "0 0.339822 0.728116 \n",
881
- "\n",
882
- " neurips_impact_statement_risks systematic_review_inclusion \\\n",
883
- "1 0.756919 0.381609 \n",
884
- "0 0.878378 0.291842 \n",
885
- "\n",
886
- " terms_of_service tai_safety_research one_stop_english \n",
887
- "1 0.461302 0.624133 0.655457 \n",
888
- "0 0.144772 0.089622 0.260366 "
889
- ]
890
- },
891
- "execution_count": 109,
892
- "metadata": {},
893
- "output_type": "execute_result"
894
- }
895
- ],
896
- "source": [
897
- "df"
898
- ]
899
- },
900
- {
901
- "cell_type": "code",
902
- "execution_count": 100,
903
- "id": "f60f453b-2457-4597-9eee-324d4c3a2f2e",
904
- "metadata": {},
905
- "outputs": [],
906
- "source": [
907
- "df.insert(1, \"Overall\", df[TASKS].mean(axis=1))"
908
- ]
909
- },
910
- {
911
- "cell_type": "code",
912
- "execution_count": 110,
913
- "id": "1fd83f7a-b554-4e7d-aef6-4338b01f3eec",
914
- "metadata": {},
915
- "outputs": [
916
- {
917
- "data": {
918
- "text/html": [
919
- "<div>\n",
920
- "<style scoped>\n",
921
- " .dataframe tbody tr th:only-of-type {\n",
922
- " vertical-align: middle;\n",
923
- " }\n",
924
- "\n",
925
- " .dataframe tbody tr th {\n",
926
- " vertical-align: top;\n",
927
- " }\n",
928
- "\n",
929
- " .dataframe thead th {\n",
930
- " text-align: right;\n",
931
- " }\n",
932
- "</style>\n",
933
- "<table border=\"1\" class=\"dataframe\">\n",
934
- " <thead>\n",
935
- " <tr style=\"text-align: right;\">\n",
936
- " <th></th>\n",
937
- " <th>Rank</th>\n",
938
- " <th>Submission</th>\n",
939
- " <th>Overall</th>\n",
940
- " <th>banking_77</th>\n",
941
- " <th>medical_subdomain_of_clinical_notes</th>\n",
942
- " <th>overruling</th>\n",
943
- " <th>gpai_initiatives</th>\n",
944
- " <th>semiconductor_org_types</th>\n",
945
- " <th>twitter_complaints</th>\n",
946
- " <th>neurips_impact_statement_risks</th>\n",
947
- " <th>systematic_review_inclusion</th>\n",
948
- " <th>terms_of_service</th>\n",
949
- " <th>tai_safety_research</th>\n",
950
- " <th>one_stop_english</th>\n",
951
- " </tr>\n",
952
- " </thead>\n",
953
- " <tbody>\n",
954
- " <tr>\n",
955
- " <th>0</th>\n",
956
- " <td>1</td>\n",
957
- " <td>lewtun/my-raft-dummy-predictions</td>\n",
958
- " <td>0.605079</td>\n",
959
- " <td>0.948903</td>\n",
960
- " <td>0.716526</td>\n",
961
- " <td>0.064395</td>\n",
962
- " <td>0.529422</td>\n",
963
- " <td>0.643723</td>\n",
964
- " <td>0.873478</td>\n",
965
- " <td>0.756919</td>\n",
966
- " <td>0.381609</td>\n",
967
- " <td>0.461302</td>\n",
968
- " <td>0.624133</td>\n",
969
- " <td>0.655457</td>\n",
970
- " </tr>\n",
971
- " <tr>\n",
972
- " <th>1</th>\n",
973
- " <td>0</td>\n",
974
- " <td>ought/raft-dummy-predictions</td>\n",
975
- " <td>0.407345</td>\n",
976
- " <td>0.009504</td>\n",
977
- " <td>0.591213</td>\n",
978
- " <td>0.552390</td>\n",
979
- " <td>0.594769</td>\n",
980
- " <td>0.339822</td>\n",
981
- " <td>0.728116</td>\n",
982
- " <td>0.878378</td>\n",
983
- " <td>0.291842</td>\n",
984
- " <td>0.144772</td>\n",
985
- " <td>0.089622</td>\n",
986
- " <td>0.260366</td>\n",
987
- " </tr>\n",
988
- " </tbody>\n",
989
- "</table>\n",
990
- "</div>"
991
- ],
992
- "text/plain": [
993
- " Rank Submission Overall banking_77 \\\n",
994
- "0 1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
995
- "1 0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
996
- "\n",
997
- " medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
998
- "0 0.716526 0.064395 0.529422 \n",
999
- "1 0.591213 0.552390 0.594769 \n",
1000
- "\n",
1001
- " semiconductor_org_types twitter_complaints \\\n",
1002
- "0 0.643723 0.873478 \n",
1003
- "1 0.339822 0.728116 \n",
1004
- "\n",
1005
- " neurips_impact_statement_risks systematic_review_inclusion \\\n",
1006
- "0 0.756919 0.381609 \n",
1007
- "1 0.878378 0.291842 \n",
1008
- "\n",
1009
- " terms_of_service tai_safety_research one_stop_english \n",
1010
- "0 0.461302 0.624133 0.655457 \n",
1011
- "1 0.144772 0.089622 0.260366 "
1012
- ]
1013
- },
1014
- "execution_count": 110,
1015
- "metadata": {},
1016
- "output_type": "execute_result"
1017
- }
1018
- ],
1019
- "source": [
1020
- "df.copy().sort_values(\"Overall\", ascending=False).reset_index().rename(columns={\"index\":\"Rank\"})"
1021
- ]
1022
- },
1023
- {
1024
- "cell_type": "code",
1025
- "execution_count": 119,
1026
- "id": "e1262ff5-6ea3-41ca-affc-b106dd9df5fd",
1027
- "metadata": {},
1028
- "outputs": [],
1029
- "source": [
1030
- "task_names = [\" \".join(t.capitalize() for t in task.split(\"_\")) for task in TASKS]"
1031
- ]
1032
- },
1033
- {
1034
- "cell_type": "code",
1035
- "execution_count": 121,
1036
- "id": "45d74b9c-c472-4494-aadc-909976d13b08",
1037
- "metadata": {},
1038
- "outputs": [
1039
- {
1040
- "data": {
1041
- "text/html": [
1042
- "<div>\n",
1043
- "<style scoped>\n",
1044
- " .dataframe tbody tr th:only-of-type {\n",
1045
- " vertical-align: middle;\n",
1046
- " }\n",
1047
- "\n",
1048
- " .dataframe tbody tr th {\n",
1049
- " vertical-align: top;\n",
1050
- " }\n",
1051
- "\n",
1052
- " .dataframe thead th {\n",
1053
- " text-align: right;\n",
1054
- " }\n",
1055
- "</style>\n",
1056
- "<table border=\"1\" class=\"dataframe\">\n",
1057
- " <thead>\n",
1058
- " <tr style=\"text-align: right;\">\n",
1059
- " <th></th>\n",
1060
- " <th>Submission</th>\n",
1061
- " <th>Overall</th>\n",
1062
- " <th>Banking 77</th>\n",
1063
- " <th>Medical Subdomain Of Clinical Notes</th>\n",
1064
- " <th>Overruling</th>\n",
1065
- " <th>Gpai Initiatives</th>\n",
1066
- " <th>Semiconductor Org Types</th>\n",
1067
- " <th>Twitter Complaints</th>\n",
1068
- " <th>Neurips Impact Statement Risks</th>\n",
1069
- " <th>Systematic Review Inclusion</th>\n",
1070
- " <th>Terms Of Service</th>\n",
1071
- " <th>Tai Safety Research</th>\n",
1072
- " <th>One Stop English</th>\n",
1073
- " </tr>\n",
1074
- " </thead>\n",
1075
- " <tbody>\n",
1076
- " <tr>\n",
1077
- " <th>1</th>\n",
1078
- " <td>lewtun/my-raft-dummy-predictions</td>\n",
1079
- " <td>0.605079</td>\n",
1080
- " <td>0.948903</td>\n",
1081
- " <td>0.716526</td>\n",
1082
- " <td>0.064395</td>\n",
1083
- " <td>0.529422</td>\n",
1084
- " <td>0.643723</td>\n",
1085
- " <td>0.873478</td>\n",
1086
- " <td>0.756919</td>\n",
1087
- " <td>0.381609</td>\n",
1088
- " <td>0.461302</td>\n",
1089
- " <td>0.624133</td>\n",
1090
- " <td>0.655457</td>\n",
1091
- " </tr>\n",
1092
- " <tr>\n",
1093
- " <th>0</th>\n",
1094
- " <td>ought/raft-dummy-predictions</td>\n",
1095
- " <td>0.407345</td>\n",
1096
- " <td>0.009504</td>\n",
1097
- " <td>0.591213</td>\n",
1098
- " <td>0.552390</td>\n",
1099
- " <td>0.594769</td>\n",
1100
- " <td>0.339822</td>\n",
1101
- " <td>0.728116</td>\n",
1102
- " <td>0.878378</td>\n",
1103
- " <td>0.291842</td>\n",
1104
- " <td>0.144772</td>\n",
1105
- " <td>0.089622</td>\n",
1106
- " <td>0.260366</td>\n",
1107
- " </tr>\n",
1108
- " </tbody>\n",
1109
- "</table>\n",
1110
- "</div>"
1111
- ],
1112
- "text/plain": [
1113
- " Submission Overall Banking 77 \\\n",
1114
- "1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
1115
- "0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
1116
- "\n",
1117
- " Medical Subdomain Of Clinical Notes Overruling Gpai Initiatives \\\n",
1118
- "1 0.716526 0.064395 0.529422 \n",
1119
- "0 0.591213 0.552390 0.594769 \n",
1120
- "\n",
1121
- " Semiconductor Org Types Twitter Complaints \\\n",
1122
- "1 0.643723 0.873478 \n",
1123
- "0 0.339822 0.728116 \n",
1124
- "\n",
1125
- " Neurips Impact Statement Risks Systematic Review Inclusion \\\n",
1126
- "1 0.756919 0.381609 \n",
1127
- "0 0.878378 0.291842 \n",
1128
- "\n",
1129
- " Terms Of Service Tai Safety Research One Stop English \n",
1130
- "1 0.461302 0.624133 0.655457 \n",
1131
- "0 0.144772 0.089622 0.260366 "
1132
- ]
1133
- },
1134
- "execution_count": 121,
1135
- "metadata": {},
1136
- "output_type": "execute_result"
1137
- }
1138
- ],
1139
- "source": [
1140
- "df.rename(columns={k:v for k,v in zip(TASKS, task_names)})"
1141
- ]
1142
- },
1143
- {
1144
- "cell_type": "code",
1145
- "execution_count": 88,
1146
- "id": "d31c2bde-1645-4c1b-982b-c9daac40311d",
1147
- "metadata": {},
1148
- "outputs": [
1149
- {
1150
- "data": {
1151
- "text/html": [
1152
- "<div>\n",
1153
- "<style scoped>\n",
1154
- " .dataframe tbody tr th:only-of-type {\n",
1155
- " vertical-align: middle;\n",
1156
- " }\n",
1157
- "\n",
1158
- " .dataframe tbody tr th {\n",
1159
- " vertical-align: top;\n",
1160
- " }\n",
1161
- "\n",
1162
- " .dataframe thead th {\n",
1163
- " text-align: right;\n",
1164
- " }\n",
1165
- "</style>\n",
1166
- "<table border=\"1\" class=\"dataframe\">\n",
1167
- " <thead>\n",
1168
- " <tr style=\"text-align: right;\">\n",
1169
- " <th></th>\n",
1170
- " <th>Submission</th>\n",
1171
- " <th>Overall</th>\n",
1172
- " <th>banking_77</th>\n",
1173
- " <th>medical_subdomain_of_clinical_notes</th>\n",
1174
- " <th>overruling</th>\n",
1175
- " <th>gpai_initiatives</th>\n",
1176
- " <th>semiconductor_org_types</th>\n",
1177
- " <th>twitter_complaints</th>\n",
1178
- " <th>neurips_impact_statement_risks</th>\n",
1179
- " <th>systematic_review_inclusion</th>\n",
1180
- " <th>terms_of_service</th>\n",
1181
- " <th>tai_safety_research</th>\n",
1182
- " <th>one_stop_english</th>\n",
1183
- " </tr>\n",
1184
- " </thead>\n",
1185
- " <tbody>\n",
1186
- " <tr>\n",
1187
- " <th>0</th>\n",
1188
- " <td>ought/raft-dummy-predictions</td>\n",
1189
- " <td>0.407345</td>\n",
1190
- " <td>0.009504</td>\n",
1191
- " <td>0.591213</td>\n",
1192
- " <td>0.55239</td>\n",
1193
- " <td>0.594769</td>\n",
1194
- " <td>0.339822</td>\n",
1195
- " <td>0.728116</td>\n",
1196
- " <td>0.878378</td>\n",
1197
- " <td>0.291842</td>\n",
1198
- " <td>0.144772</td>\n",
1199
- " <td>0.089622</td>\n",
1200
- " <td>0.260366</td>\n",
1201
- " </tr>\n",
1202
- " </tbody>\n",
1203
- "</table>\n",
1204
- "</div>"
1205
- ],
1206
- "text/plain": [
1207
- " Submission Overall banking_77 \\\n",
1208
- "0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
1209
- "\n",
1210
- " medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
1211
- "0 0.591213 0.55239 0.594769 \n",
1212
- "\n",
1213
- " semiconductor_org_types twitter_complaints \\\n",
1214
- "0 0.339822 0.728116 \n",
1215
- "\n",
1216
- " neurips_impact_statement_risks systematic_review_inclusion \\\n",
1217
- "0 0.878378 0.291842 \n",
1218
- "\n",
1219
- " terms_of_service tai_safety_research one_stop_english \n",
1220
- "0 0.144772 0.089622 0.260366 "
1221
- ]
1222
- },
1223
- "execution_count": 88,
1224
- "metadata": {},
1225
- "output_type": "execute_result"
1226
- }
1227
- ],
1228
- "source": [
1229
- "df.sort_values(\"Overall\")"
1230
- ]
1231
- },
1232
- {
1233
- "cell_type": "code",
1234
- "execution_count": null,
1235
- "id": "4df33059-020a-43cf-aa3a-de6939268cc7",
1236
- "metadata": {},
1237
- "outputs": [],
1238
- "source": [
1239
- "df[\"Overall\"] = df.mean()"
1240
- ]
1241
- },
1242
- {
1243
- "cell_type": "code",
1244
- "execution_count": null,
1245
- "id": "327539f3-3bf7-4a2e-ac10-89973a2ba37f",
1246
- "metadata": {},
1247
- "outputs": [],
1248
- "source": [
1249
- "df[\"Submission\"]"
1250
- ]
1251
- },
1252
- {
1253
- "cell_type": "code",
1254
- "execution_count": 38,
1255
- "id": "f07ec556-2ebf-400e-85f7-c978d03b0dc1",
1256
- "metadata": {},
1257
- "outputs": [],
1258
- "source": [
1259
- "data = format_submissions(submissions[-1:])"
1260
- ]
1261
- },
1262
- {
1263
- "cell_type": "code",
1264
- "execution_count": 48,
1265
- "id": "a982e024-ab16-4752-984a-5368fa238f1d",
1266
- "metadata": {},
1267
- "outputs": [
1268
- {
1269
- "data": {
1270
- "text/html": [
1271
- "<div>\n",
1272
- "<style scoped>\n",
1273
- " .dataframe tbody tr th:only-of-type {\n",
1274
- " vertical-align: middle;\n",
1275
- " }\n",
1276
- "\n",
1277
- " .dataframe tbody tr th {\n",
1278
- " vertical-align: top;\n",
1279
- " }\n",
1280
- "\n",
1281
- " .dataframe thead th {\n",
1282
- " text-align: right;\n",
1283
- " }\n",
1284
- "</style>\n",
1285
- "<table border=\"1\" class=\"dataframe\">\n",
1286
- " <thead>\n",
1287
- " <tr style=\"text-align: right;\">\n",
1288
- " <th></th>\n",
1289
- " <th>bank</th>\n",
1290
- " </tr>\n",
1291
- " </thead>\n",
1292
- " <tbody>\n",
1293
- " <tr>\n",
1294
- " <th>0</th>\n",
1295
- " <td>0.2</td>\n",
1296
- " </tr>\n",
1297
- " </tbody>\n",
1298
- "</table>\n",
1299
- "</div>"
1300
- ],
1301
- "text/plain": [
1302
- " bank\n",
1303
- "0 0.2"
1304
- ]
1305
- },
1306
- "execution_count": 48,
1307
- "metadata": {},
1308
- "output_type": "execute_result"
1309
- }
1310
- ],
1311
- "source": [
1312
- "pd.DataFrame({\"bank\":[0.2]})"
1313
- ]
1314
- },
1315
- {
1316
- "cell_type": "code",
1317
- "execution_count": 60,
1318
- "id": "b7c73606-d7f9-4f17-bf4d-17cfbb3aa664",
1319
- "metadata": {},
1320
- "outputs": [
1321
- {
1322
- "name": "stdout",
1323
- "output_type": "stream",
1324
- "text": [
1325
- "['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli', 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte', 'wnli', 'ax']\n"
1326
- ]
1327
- }
1328
- ],
1329
- "source": [
1330
- "from datasets import get_dataset_config_names\n",
1331
- "\n",
1332
- "configs = get_dataset_config_names(\"glue\")\n",
1333
- "print(configs)"
1334
- ]
1335
- },
1336
- {
1337
- "cell_type": "code",
1338
- "execution_count": 50,
1339
- "id": "92eea464-6b63-4613-ab4d-aa5003e0bb3b",
1340
- "metadata": {},
1341
- "outputs": [],
1342
- "source": [
1343
- "from datasets import get_dataset_config_names"
1344
- ]
1345
- },
1346
- {
1347
- "cell_type": "code",
1348
- "execution_count": 51,
1349
- "id": "4f9c2924-001a-4b76-a8ed-a072b43eedbd",
1350
- "metadata": {},
1351
- "outputs": [],
1352
- "source": [
1353
- "tasks = get_dataset_config_names(\"ought/raft\")"
1354
- ]
1355
- },
1356
- {
1357
- "cell_type": "code",
1358
- "execution_count": 55,
1359
- "id": "9b27374f-b118-440a-acab-6e4aa09f42a4",
1360
- "metadata": {},
1361
- "outputs": [],
1362
- "source": [
1363
- "submission_data = {t:[] for t in tasks}\n",
1364
- "\n",
1365
- "for task in data[\"card_data\"][\"results\"]:\n",
1366
- " task_data = task[\"task\"]\n",
1367
- " task_name = task_data[\"name\"]\n",
1368
- " score = task_data[\"metrics\"][0][\"value\"]\n",
1369
- " submission_data[task_name].append(score)"
1370
- ]
1371
- },
1372
- {
1373
- "cell_type": "code",
1374
- "execution_count": 56,
1375
- "id": "6b7cf2e0-ee92-4647-8d9b-6edef48e06f8",
1376
- "metadata": {},
1377
- "outputs": [
1378
- {
1379
- "data": {
1380
- "text/plain": [
1381
- "{'banking_77': [0.009504218288713173],\n",
1382
- " 'medical_subdomain_of_clinical_notes': [0.5912133593265538],\n",
1383
- " 'overruling': [0.5523904885287522],\n",
1384
- " 'gpai_initiatives': [0.5947694876413803],\n",
1385
- " 'semiconductor_org_types': [0.33982211621333613],\n",
1386
- " 'twitter_complaints': [0.7281156178656647],\n",
1387
- " 'neurips_impact_statement_risks': [0.8783775228874845],\n",
1388
- " 'systematic_review_inclusion': [0.2918416872180052],\n",
1389
- " 'terms_of_service': [0.14477157391911066],\n",
1390
- " 'tai_safety_research': [0.08962249895220364],\n",
1391
- " 'one_stop_english': [0.2603661495335281]}"
1392
- ]
1393
- },
1394
- "execution_count": 56,
1395
- "metadata": {},
1396
- "output_type": "execute_result"
1397
- }
1398
- ],
1399
- "source": [
1400
- "submission_data"
1401
- ]
1402
- },
1403
- {
1404
- "cell_type": "code",
1405
- "execution_count": 61,
1406
- "id": "5df282e4-87c4-4ea7-833e-6a87886e2f76",
1407
- "metadata": {},
1408
- "outputs": [
1409
- {
1410
- "data": {
1411
- "text/plain": [
1412
- "{'benchmark': 'ought/raft',\n",
1413
- " 'type': 'evaluation',\n",
1414
- " 'submission_dataset': 'ought/raft-dummy-predictions',\n",
1415
- " 'tags': ['autonlp', 'evaluation', 'benchmark'],\n",
1416
- " 'model-index': None,\n",
1417
- " 'results': [{'task': {'metrics': [{'name': 'f1',\n",
1418
- " 'type': 'f1',\n",
1419
- " 'value': 0.009504218288713173}],\n",
1420
- " 'name': 'banking_77',\n",
1421
- " 'type': 'text-classification'}},\n",
1422
- " {'task': {'metrics': [{'name': 'f1',\n",
1423
- " 'type': 'f1',\n",
1424
- " 'value': 0.5912133593265538}],\n",
1425
- " 'name': 'medical_subdomain_of_clinical_notes',\n",
1426
- " 'type': 'text-classification'}},\n",
1427
- " {'task': {'metrics': [{'name': 'f1',\n",
1428
- " 'type': 'f1',\n",
1429
- " 'value': 0.5523904885287522}],\n",
1430
- " 'name': 'overruling',\n",
1431
- " 'type': 'text-classification'}},\n",
1432
- " {'task': {'metrics': [{'name': 'f1',\n",
1433
- " 'type': 'f1',\n",
1434
- " 'value': 0.5947694876413803}],\n",
1435
- " 'name': 'gpai_initiatives',\n",
1436
- " 'type': 'text-classification'}},\n",
1437
- " {'task': {'metrics': [{'name': 'f1',\n",
1438
- " 'type': 'f1',\n",
1439
- " 'value': 0.33982211621333613}],\n",
1440
- " 'name': 'semiconductor_org_types',\n",
1441
- " 'type': 'text-classification'}},\n",
1442
- " {'task': {'metrics': [{'name': 'f1',\n",
1443
- " 'type': 'f1',\n",
1444
- " 'value': 0.7281156178656647}],\n",
1445
- " 'name': 'twitter_complaints',\n",
1446
- " 'type': 'text-classification'}},\n",
1447
- " {'task': {'metrics': [{'name': 'f1',\n",
1448
- " 'type': 'f1',\n",
1449
- " 'value': 0.8783775228874845}],\n",
1450
- " 'name': 'neurips_impact_statement_risks',\n",
1451
- " 'type': 'text-classification'}},\n",
1452
- " {'task': {'metrics': [{'name': 'f1',\n",
1453
- " 'type': 'f1',\n",
1454
- " 'value': 0.2918416872180052}],\n",
1455
- " 'name': 'systematic_review_inclusion',\n",
1456
- " 'type': 'text-classification'}},\n",
1457
- " {'task': {'metrics': [{'name': 'f1',\n",
1458
- " 'type': 'f1',\n",
1459
- " 'value': 0.14477157391911066}],\n",
1460
- " 'name': 'terms_of_service',\n",
1461
- " 'type': 'text-classification'}},\n",
1462
- " {'task': {'metrics': [{'name': 'f1',\n",
1463
- " 'type': 'f1',\n",
1464
- " 'value': 0.08962249895220364}],\n",
1465
- " 'name': 'tai_safety_research',\n",
1466
- " 'type': 'text-classification'}},\n",
1467
- " {'task': {'metrics': [{'name': 'f1',\n",
1468
- " 'type': 'f1',\n",
1469
- " 'value': 0.2603661495335281}],\n",
1470
- " 'name': 'one_stop_english',\n",
1471
- " 'type': 'text-classification'}}]}"
1472
- ]
1473
- },
1474
- "execution_count": 61,
1475
- "metadata": {},
1476
- "output_type": "execute_result"
1477
- }
1478
- ],
1479
- "source": [
1480
- "data[\"card_data\"]"
1481
- ]
1482
- },
1483
- {
1484
- "cell_type": "code",
1485
- "execution_count": 2,
1486
- "id": "b07a4fa9-176e-4ff3-bc3f-eb2a6fc9efda",
1487
- "metadata": {},
1488
- "outputs": [],
1489
- "source": [
1490
- "response = requests.get(\"http://huggingface.co/api/datasets\", headers=header)\n",
1491
- "all_datasets = response.json()"
1492
- ]
1493
- },
1494
- {
1495
- "cell_type": "code",
1496
- "execution_count": 3,
1497
- "id": "63dc07ec-2f28-483f-8163-c97e8a6a4005",
1498
- "metadata": {},
1499
- "outputs": [
1500
- {
1501
- "data": {
1502
- "text/plain": [
1503
- "2510"
1504
- ]
1505
- },
1506
- "execution_count": 3,
1507
- "metadata": {},
1508
- "output_type": "execute_result"
1509
- }
1510
- ],
1511
- "source": [
1512
- "len(all_datasets)"
1513
- ]
1514
- },
1515
- {
1516
- "cell_type": "code",
1517
- "execution_count": 21,
1518
- "id": "296f68c1-608d-4ea6-8d0e-cc35fb7d74c4",
1519
- "metadata": {},
1520
- "outputs": [
1521
- {
1522
- "data": {
1523
- "text/plain": [
1524
- "{'id': 'disfl_qa',\n",
1525
- " 'tags': ['annotations_creators:expert-generated',\n",
1526
- " 'language_creators:found',\n",
1527
- " 'languages:en',\n",
1528
- " 'licenses:cc-by-4.0',\n",
1529
- " 'multilinguality:monolingual',\n",
1530
- " 'pretty_name:DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering',\n",
1531
- " 'size_categories:10K<n<100K',\n",
1532
- " 'source_datasets:original',\n",
1533
- " 'task_categories:question-answering',\n",
1534
- " 'task_ids:extractive-qa',\n",
1535
- " 'task_ids:open-domain-qa'],\n",
1536
- " 'citation': '@inproceedings{gupta-etal-2021-disflqa,\\n title = \"{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}\",\\n author = \"Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal\",\\n booktitle = \"Findings of ACL\",\\n year = \"2021\"\\n}',\n",
1537
- " 'description': 'Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting,\\nnamely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018)\\ndataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as\\na source of distractors.\\n\\nThe final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are\\ncorrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a\\nmajor gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for\\ntesting robustness of models against disfluent inputs.\\n\\nOur expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from\\nDisfl-QA. Detailed experiments and analyses can be found in our paper.',\n",
1538
- " 'key': ''}"
1539
- ]
1540
- },
1541
- "execution_count": 21,
1542
- "metadata": {},
1543
- "output_type": "execute_result"
1544
- }
1545
- ],
1546
- "source": [
1547
- "all_datasets[154]"
1548
- ]
1549
- },
1550
- {
1551
- "cell_type": "code",
1552
- "execution_count": 22,
1553
- "id": "8c73c912-c903-48f9-9ccf-fdb70d0bd556",
1554
- "metadata": {},
1555
- "outputs": [],
1556
- "source": [
1557
- "def extract_tags(dataset):\n",
1558
- " tags = {}\n",
1559
- " for tag in dataset[\"tags\"]:\n",
1560
- " k,v = tuple(tag.split(\":\", 1))\n",
1561
- " tags[k] = v\n",
1562
- " return tags"
1563
- ]
1564
- },
1565
- {
1566
- "cell_type": "code",
1567
- "execution_count": 24,
1568
- "id": "d4aa1b62-1501-4f3d-8613-e2dfb5fef79d",
1569
- "metadata": {},
1570
- "outputs": [],
1571
- "source": [
1572
- "tags = extract_tags(all_datasets[0])"
1573
- ]
1574
- },
1575
- {
1576
- "cell_type": "code",
1577
- "execution_count": 27,
1578
- "id": "b8c25fe5-d0d5-4ca9-afc6-8d5cf68f20fd",
1579
- "metadata": {},
1580
- "outputs": [
1581
- {
1582
- "data": {
1583
- "text/plain": [
1584
- "False"
1585
- ]
1586
- },
1587
- "execution_count": 27,
1588
- "metadata": {},
1589
- "output_type": "execute_result"
1590
- }
1591
- ],
1592
- "source": [
1593
- "tags.get(\"benchmark\") == \"raft\""
1594
- ]
1595
- },
1596
- {
1597
- "cell_type": "code",
1598
- "execution_count": 23,
1599
- "id": "441f0b74-68a4-4b82-862d-2fcc69331cc0",
1600
- "metadata": {},
1601
- "outputs": [],
1602
- "source": [
1603
- "for idx, dset in enumerate(all_datasets):\n",
1604
- " try:\n",
1605
- " extract_tags(dset)\n",
1606
- " except:\n",
1607
- " print(dset[\"id\"], idx)"
1608
- ]
1609
- },
1610
- {
1611
- "cell_type": "code",
1612
- "execution_count": 5,
1613
- "id": "b43f6131-6509-455f-ac02-1efabd9cdd1c",
1614
- "metadata": {},
1615
- "outputs": [
1616
- {
1617
- "data": {
1618
- "text/plain": [
1619
- "{'annotations_creators': 'expert-generated',\n",
1620
- " 'language_creators': 'found',\n",
1621
- " 'languages': 'en',\n",
1622
- " 'licenses': 'mit',\n",
1623
- " 'multilinguality': 'monolingual',\n",
1624
- " 'size_categories': '10K<n<100K',\n",
1625
- " 'source_datasets': 'original',\n",
1626
- " 'task_categories': 'structure-prediction',\n",
1627
- " 'task_ids': 'structure-prediction-other-acronym-identification'}"
1628
- ]
1629
- },
1630
- "execution_count": 5,
1631
- "metadata": {},
1632
- "output_type": "execute_result"
1633
- }
1634
- ],
1635
- "source": [
1636
- "{i[0]:i[1] for t.split(\":\") in all_datasets[0][\"tags\"]}"
1637
- ]
1638
- },
1639
- {
1640
- "cell_type": "code",
1641
- "execution_count": 11,
1642
- "id": "63420516-9870-4ecf-80d8-d922994e4b17",
1643
- "metadata": {},
1644
- "outputs": [
1645
- {
1646
- "name": "stdout",
1647
- "output_type": "stream",
1648
- "text": [
1649
- "('a',)\n",
1650
- "('b',)\n"
1651
- ]
1652
- }
1653
- ],
1654
- "source": [
1655
- "for i in zip(\"a:b\".split(\":\")):\n",
1656
- " print(i)"
1657
- ]
1658
- },
1659
- {
1660
- "cell_type": "code",
1661
- "execution_count": 15,
1662
- "id": "dc43998b-c93b-48c0-bee4-e80845950246",
1663
- "metadata": {},
1664
- "outputs": [
1665
- {
1666
- "ename": "ValueError",
1667
- "evalue": "not enough values to unpack (expected 2, got 1)",
1668
- "output_type": "error",
1669
- "traceback": [
1670
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1671
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
1672
- "\u001b[0;32m/var/folders/28/k4cy5q7s2hs92xq7_h89_vgm0000gn/T/ipykernel_19497/2621214275.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"a\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"b\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
1673
- "\u001b[0;31mValueError\u001b[0m: not enough values to unpack (expected 2, got 1)"
1674
- ]
1675
- }
1676
- ],
1677
- "source": [
1678
- "a, b = zip(*[\"a\", \"b\"])"
1679
- ]
1680
- },
1681
- {
1682
- "cell_type": "code",
1683
- "execution_count": 12,
1684
- "id": "4990ce09-a53f-47dd-b662-3f498352b641",
1685
- "metadata": {},
1686
- "outputs": [
1687
- {
1688
- "name": "stdout",
1689
- "output_type": "stream",
1690
- "text": [
1691
- "annotations_creators expert-generated\n",
1692
- "language_creators found\n",
1693
- "languages en\n",
1694
- "licenses mit\n",
1695
- "multilinguality monolingual\n",
1696
- "size_categories 10K<n<100K\n",
1697
- "source_datasets original\n",
1698
- "task_categories structure-prediction\n",
1699
- "task_ids structure-prediction-other-acronym-identification\n"
1700
- ]
1701
- }
1702
- ],
1703
- "source": [
1704
- "for tag in all_datasets[0][\"tags\"]:\n",
1705
- " k,v = tuple(tag.split(\":\"))\n",
1706
- " print(k,v)"
1707
- ]
1708
- },
1709
- {
1710
- "cell_type": "code",
1711
- "execution_count": 138,
1712
- "id": "cf6b59da-02ff-4522-892d-8fe0aa254d01",
1713
- "metadata": {},
1714
- "outputs": [
1715
- {
1716
- "name": "stdout",
1717
- "output_type": "stream",
1718
- "text": [
1719
- "0 <s>\n",
1720
- "1922 ¡\n",
1721
- "11884 hola\n",
1722
- "16 ,\n",
1723
- "378 me\n",
1724
- "13496 llamo\n",
1725
- "466 le\n",
1726
- "91 w\n",
1727
- "350 is\n",
1728
- "5 !\n",
1729
- "2 </s>\n"
1730
- ]
1731
- }
1732
- ],
1733
- "source": [
1734
- "from transformers import AutoTokenizer\n",
1735
- "\n",
1736
- "model_ckpt = \"bertin-project/bertin-roberta-base-spanish\"\n",
1737
- "tokenizer = AutoTokenizer.from_pretrained(model_ckpt, use_fast=False)\n",
1738
- "input_ids = tokenizer(\"¡hola, me llamo lewis!\").input_ids\n",
1739
- "for token in input_ids:\n",
1740
- " print(token, tokenizer.decode(token))"
1741
- ]
1742
- },
1743
- {
1744
- "cell_type": "code",
1745
- "execution_count": null,
1746
- "id": "430400f2-2c04-48d7-bf8e-63528441d410",
1747
- "metadata": {},
1748
- "outputs": [],
1749
- "source": [
1750
- "# 1922 ¡\n",
1751
- "# 11884 hola\n",
1752
- "# 16 ,\n",
1753
- "# 378 me\n",
1754
- "# 13496 llamo\n",
1755
- "# 466 le\n",
1756
- "# 91 w\n",
1757
- "# 350 is\n",
1758
- "# 5 !"
1759
- ]
1760
- },
1761
- {
1762
- "cell_type": "code",
1763
- "execution_count": 130,
1764
- "id": "2ecdd872-af9b-4258-8a5e-d867f3785520",
1765
- "metadata": {},
1766
- "outputs": [
1767
- {
1768
- "data": {
1769
- "text/plain": [
1770
- "0"
1771
- ]
1772
- },
1773
- "execution_count": 130,
1774
- "metadata": {},
1775
- "output_type": "execute_result"
1776
- }
1777
- ],
1778
- "source": [
1779
- "tokenizer.vocab[\"<s>\"]"
1780
- ]
1781
- },
1782
- {
1783
- "cell_type": "code",
1784
- "execution_count": 131,
1785
- "id": "16941c33-5e22-485f-9d24-ac8f8542c368",
1786
- "metadata": {},
1787
- "outputs": [
1788
- {
1789
- "data": {
1790
- "text/plain": [
1791
- "'<s>'"
1792
- ]
1793
- },
1794
- "execution_count": 131,
1795
- "metadata": {},
1796
- "output_type": "execute_result"
1797
- }
1798
- ],
1799
- "source": [
1800
- "tokenizer.bos_token"
1801
- ]
1802
- },
1803
- {
1804
- "cell_type": "code",
1805
- "execution_count": null,
1806
- "id": "71929465-5ad5-444d-8c77-22f586b1ba23",
1807
- "metadata": {},
1808
- "outputs": [],
1809
- "source": []
1810
- }
1811
- ],
1812
- "metadata": {
1813
- "kernelspec": {
1814
- "display_name": "Python 3 (ipykernel)",
1815
- "language": "python",
1816
- "name": "python3"
1817
- },
1818
- "language_info": {
1819
- "codemirror_mode": {
1820
- "name": "ipython",
1821
- "version": 3
1822
- },
1823
- "file_extension": ".py",
1824
- "mimetype": "text/x-python",
1825
- "name": "python",
1826
- "nbconvert_exporter": "python",
1827
- "pygments_lexer": "ipython3",
1828
- "version": "3.8.10"
1829
- }
1830
- },
1831
- "nbformat": 4,
1832
- "nbformat_minor": 5
1833
- }