Spaces:
Runtime error
Runtime error
Remove scratch notebook
Browse files- Untitled.ipynb +0 -1833
Untitled.ipynb
DELETED
@@ -1,1833 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 89,
|
6 |
-
"id": "c0cdda73-430c-4e18-bce4-b2218e2597b9",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"from datasets import load_dataset, get_dataset_config_names"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": null,
|
16 |
-
"id": "4981ce75-5d13-4fd2-b08f-af077066f7d3",
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [],
|
19 |
-
"source": []
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 32,
|
24 |
-
"id": "13e20072-0304-424a-923d-ac31a1769e94",
|
25 |
-
"metadata": {},
|
26 |
-
"outputs": [],
|
27 |
-
"source": [
|
28 |
-
"import os\n",
|
29 |
-
"from datetime import datetime\n",
|
30 |
-
"from pathlib import Path\n",
|
31 |
-
"from re import sub\n",
|
32 |
-
"\n",
|
33 |
-
"import pandas as pd\n",
|
34 |
-
"import requests\n",
|
35 |
-
"import streamlit as st\n",
|
36 |
-
"from datasets import get_dataset_config_names\n",
|
37 |
-
"from dotenv import load_dotenv\n",
|
38 |
-
"\n",
|
39 |
-
"if Path(\".env\").is_file():\n",
|
40 |
-
" load_dotenv(\".env\")\n",
|
41 |
-
"\n",
|
42 |
-
"auth_token = os.getenv(\"HF_HUB_TOKEN\")\n",
|
43 |
-
"header = {\"Authorization\": \"Bearer \" + auth_token}\n",
|
44 |
-
"\n",
|
45 |
-
"TASKS = get_dataset_config_names(\"ought/raft\")\n",
|
46 |
-
"# Split and capitalize the task names, e.g. banking_77 => Banking 77\n",
|
47 |
-
"FORMATTED_TASK_NAMES = [\" \".join(t.capitalize() for t in task.split(\"_\")) for task in TASKS]\n",
|
48 |
-
"\n",
|
49 |
-
"\n",
|
50 |
-
"def extract_tags(dataset):\n",
|
51 |
-
" tags = {}\n",
|
52 |
-
" for tag in dataset[\"tags\"]:\n",
|
53 |
-
" k, v = tuple(tag.split(\":\", 1))\n",
|
54 |
-
" tags[k] = v\n",
|
55 |
-
" return tags\n",
|
56 |
-
"\n",
|
57 |
-
"\n",
|
58 |
-
"def download_submissions():\n",
|
59 |
-
" response = requests.get(\"http://huggingface.co/api/datasets\", headers=header)\n",
|
60 |
-
" all_datasets = response.json()\n",
|
61 |
-
"\n",
|
62 |
-
" submissions = []\n",
|
63 |
-
"\n",
|
64 |
-
" for dataset in all_datasets:\n",
|
65 |
-
" tags = extract_tags(dataset)\n",
|
66 |
-
" if tags.get(\"benchmark\") == \"ought/raft\" and tags.get(\"type\") == \"evaluation\":\n",
|
67 |
-
" submissions.append(dataset)\n",
|
68 |
-
" return submissions\n",
|
69 |
-
"\n",
|
70 |
-
"\n",
|
71 |
-
"def format_submissions(submissions):\n",
|
72 |
-
" submission_data = {**{\"Submission\": []}, **{\"Date\": []}, **{t: [] for t in TASKS}}\n",
|
73 |
-
"\n",
|
74 |
-
" # TODO(lewtun): delete / filter all the junk repos from development\n",
|
75 |
-
" # The following picks the latest submissions which adhere to the model card schema\n",
|
76 |
-
" for submission in submissions:\n",
|
77 |
-
" submission_id = submission[\"id\"]\n",
|
78 |
-
" response = requests.get(\n",
|
79 |
-
" f\"http://huggingface.co/api/datasets/{submission_id}?full=true\",\n",
|
80 |
-
" headers=header,\n",
|
81 |
-
" )\n",
|
82 |
-
" data = response.json()\n",
|
83 |
-
" card_data = data[\"card_data\"]\n",
|
84 |
-
" submission_name = card_data[\"submission_dataset\"]\n",
|
85 |
-
" submission_data[\"Submission\"].append(submission_name)\n",
|
86 |
-
" submission_id = card_data[\"submission_id\"]\n",
|
87 |
-
" timestamp = submission_id.split(\"-\")[-1]\n",
|
88 |
-
" timestamp = pd.to_datetime(int(timestamp))\n",
|
89 |
-
" submission_data[\"Date\"].append(datetime.date(timestamp))\n",
|
90 |
-
"\n",
|
91 |
-
" for task in card_data[\"results\"]:\n",
|
92 |
-
" task_data = task[\"task\"]\n",
|
93 |
-
" task_name = task_data[\"name\"]\n",
|
94 |
-
" score = task_data[\"metrics\"][0][\"value\"]\n",
|
95 |
-
" submission_data[task_name].append(score)\n",
|
96 |
-
"\n",
|
97 |
-
" df = pd.DataFrame(submission_data)\n",
|
98 |
-
" df.insert(2, \"Overall\", df[TASKS].mean(axis=1))\n",
|
99 |
-
" df = df.copy().sort_values(\"Overall\", ascending=False).reset_index().rename(columns={\"index\": \"Rank\"})\n",
|
100 |
-
" df.rename(columns={k: v for k, v in zip(TASKS, FORMATTED_TASK_NAMES)}, inplace=True)\n",
|
101 |
-
" return df"
|
102 |
-
]
|
103 |
-
},
|
104 |
-
{
|
105 |
-
"cell_type": "code",
|
106 |
-
"execution_count": 28,
|
107 |
-
"id": "8dccc419-7b18-4a10-a4bf-2d69cc3b5888",
|
108 |
-
"metadata": {},
|
109 |
-
"outputs": [],
|
110 |
-
"source": [
|
111 |
-
"submissions = download_submissions()"
|
112 |
-
]
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"cell_type": "code",
|
116 |
-
"execution_count": 29,
|
117 |
-
"id": "934ea3b9-76dd-4d8f-a62d-8e2fa5959111",
|
118 |
-
"metadata": {},
|
119 |
-
"outputs": [
|
120 |
-
{
|
121 |
-
"data": {
|
122 |
-
"text/plain": [
|
123 |
-
"2"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
"execution_count": 29,
|
127 |
-
"metadata": {},
|
128 |
-
"output_type": "execute_result"
|
129 |
-
}
|
130 |
-
],
|
131 |
-
"source": [
|
132 |
-
"len(submissions)"
|
133 |
-
]
|
134 |
-
},
|
135 |
-
{
|
136 |
-
"cell_type": "code",
|
137 |
-
"execution_count": 34,
|
138 |
-
"id": "c3803890-d664-4d24-86bc-8fb095cad40a",
|
139 |
-
"metadata": {},
|
140 |
-
"outputs": [],
|
141 |
-
"source": [
|
142 |
-
"df = format_submissions(submissions)"
|
143 |
-
]
|
144 |
-
},
|
145 |
-
{
|
146 |
-
"cell_type": "code",
|
147 |
-
"execution_count": 35,
|
148 |
-
"id": "2de6f903-c327-42b6-a1ca-a530a62cc412",
|
149 |
-
"metadata": {},
|
150 |
-
"outputs": [
|
151 |
-
{
|
152 |
-
"data": {
|
153 |
-
"text/html": [
|
154 |
-
"<div>\n",
|
155 |
-
"<style scoped>\n",
|
156 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
157 |
-
" vertical-align: middle;\n",
|
158 |
-
" }\n",
|
159 |
-
"\n",
|
160 |
-
" .dataframe tbody tr th {\n",
|
161 |
-
" vertical-align: top;\n",
|
162 |
-
" }\n",
|
163 |
-
"\n",
|
164 |
-
" .dataframe thead th {\n",
|
165 |
-
" text-align: right;\n",
|
166 |
-
" }\n",
|
167 |
-
"</style>\n",
|
168 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
169 |
-
" <thead>\n",
|
170 |
-
" <tr style=\"text-align: right;\">\n",
|
171 |
-
" <th></th>\n",
|
172 |
-
" <th>Rank</th>\n",
|
173 |
-
" <th>Submission</th>\n",
|
174 |
-
" <th>Date</th>\n",
|
175 |
-
" <th>Overall</th>\n",
|
176 |
-
" <th>Ade Corpus V2</th>\n",
|
177 |
-
" <th>Banking 77</th>\n",
|
178 |
-
" <th>Terms Of Service</th>\n",
|
179 |
-
" <th>Tai Safety Research</th>\n",
|
180 |
-
" <th>Neurips Impact Statement Risks</th>\n",
|
181 |
-
" <th>Overruling</th>\n",
|
182 |
-
" <th>Systematic Review Inclusion</th>\n",
|
183 |
-
" <th>One Stop English</th>\n",
|
184 |
-
" <th>Tweet Eval Hate</th>\n",
|
185 |
-
" <th>Twitter Complaints</th>\n",
|
186 |
-
" <th>Semiconductor Org Types</th>\n",
|
187 |
-
" </tr>\n",
|
188 |
-
" </thead>\n",
|
189 |
-
" <tbody>\n",
|
190 |
-
" <tr>\n",
|
191 |
-
" <th>0</th>\n",
|
192 |
-
" <td>1</td>\n",
|
193 |
-
" <td>Human baseline (crowdsourced)</td>\n",
|
194 |
-
" <td>2021-08-27</td>\n",
|
195 |
-
" <td>0.735273</td>\n",
|
196 |
-
" <td>0.830</td>\n",
|
197 |
-
" <td>0.607</td>\n",
|
198 |
-
" <td>0.627</td>\n",
|
199 |
-
" <td>0.609</td>\n",
|
200 |
-
" <td>0.857</td>\n",
|
201 |
-
" <td>0.917</td>\n",
|
202 |
-
" <td>0.468</td>\n",
|
203 |
-
" <td>0.646</td>\n",
|
204 |
-
" <td>0.722</td>\n",
|
205 |
-
" <td>0.897</td>\n",
|
206 |
-
" <td>0.908</td>\n",
|
207 |
-
" </tr>\n",
|
208 |
-
" <tr>\n",
|
209 |
-
" <th>1</th>\n",
|
210 |
-
" <td>0</td>\n",
|
211 |
-
" <td>GPT-3 baseline</td>\n",
|
212 |
-
" <td>2021-08-27</td>\n",
|
213 |
-
" <td>0.631000</td>\n",
|
214 |
-
" <td>0.688</td>\n",
|
215 |
-
" <td>0.295</td>\n",
|
216 |
-
" <td>0.579</td>\n",
|
217 |
-
" <td>0.667</td>\n",
|
218 |
-
" <td>0.595</td>\n",
|
219 |
-
" <td>0.940</td>\n",
|
220 |
-
" <td>0.535</td>\n",
|
221 |
-
" <td>0.407</td>\n",
|
222 |
-
" <td>0.529</td>\n",
|
223 |
-
" <td>0.822</td>\n",
|
224 |
-
" <td>0.884</td>\n",
|
225 |
-
" </tr>\n",
|
226 |
-
" </tbody>\n",
|
227 |
-
"</table>\n",
|
228 |
-
"</div>"
|
229 |
-
],
|
230 |
-
"text/plain": [
|
231 |
-
" Rank Submission Date Overall Ade Corpus V2 \\\n",
|
232 |
-
"0 1 Human baseline (crowdsourced) 2021-08-27 0.735273 0.830 \n",
|
233 |
-
"1 0 GPT-3 baseline 2021-08-27 0.631000 0.688 \n",
|
234 |
-
"\n",
|
235 |
-
" Banking 77 Terms Of Service Tai Safety Research \\\n",
|
236 |
-
"0 0.607 0.627 0.609 \n",
|
237 |
-
"1 0.295 0.579 0.667 \n",
|
238 |
-
"\n",
|
239 |
-
" Neurips Impact Statement Risks Overruling Systematic Review Inclusion \\\n",
|
240 |
-
"0 0.857 0.917 0.468 \n",
|
241 |
-
"1 0.595 0.940 0.535 \n",
|
242 |
-
"\n",
|
243 |
-
" One Stop English Tweet Eval Hate Twitter Complaints \\\n",
|
244 |
-
"0 0.646 0.722 0.897 \n",
|
245 |
-
"1 0.407 0.529 0.822 \n",
|
246 |
-
"\n",
|
247 |
-
" Semiconductor Org Types \n",
|
248 |
-
"0 0.908 \n",
|
249 |
-
"1 0.884 "
|
250 |
-
]
|
251 |
-
},
|
252 |
-
"execution_count": 35,
|
253 |
-
"metadata": {},
|
254 |
-
"output_type": "execute_result"
|
255 |
-
}
|
256 |
-
],
|
257 |
-
"source": [
|
258 |
-
"df"
|
259 |
-
]
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"cell_type": "code",
|
263 |
-
"execution_count": 45,
|
264 |
-
"id": "ca6ba762-047f-4074-a5c3-b4168c13d398",
|
265 |
-
"metadata": {},
|
266 |
-
"outputs": [
|
267 |
-
{
|
268 |
-
"data": {
|
269 |
-
"text/html": [
|
270 |
-
"<style type=\"text/css\">\n",
|
271 |
-
"</style>\n",
|
272 |
-
"<table id=\"T_b6d1f_\">\n",
|
273 |
-
" <thead>\n",
|
274 |
-
" <tr>\n",
|
275 |
-
" <th class=\"blank level0\" > </th>\n",
|
276 |
-
" <th class=\"col_heading level0 col0\" >Rank</th>\n",
|
277 |
-
" <th class=\"col_heading level0 col1\" >Submission</th>\n",
|
278 |
-
" <th class=\"col_heading level0 col2\" >Date</th>\n",
|
279 |
-
" <th class=\"col_heading level0 col3\" >Overall</th>\n",
|
280 |
-
" <th class=\"col_heading level0 col4\" >Ade Corpus V2</th>\n",
|
281 |
-
" <th class=\"col_heading level0 col5\" >Banking 77</th>\n",
|
282 |
-
" <th class=\"col_heading level0 col6\" >Terms Of Service</th>\n",
|
283 |
-
" <th class=\"col_heading level0 col7\" >Tai Safety Research</th>\n",
|
284 |
-
" <th class=\"col_heading level0 col8\" >Neurips Impact Statement Risks</th>\n",
|
285 |
-
" <th class=\"col_heading level0 col9\" >Overruling</th>\n",
|
286 |
-
" <th class=\"col_heading level0 col10\" >Systematic Review Inclusion</th>\n",
|
287 |
-
" <th class=\"col_heading level0 col11\" >One Stop English</th>\n",
|
288 |
-
" <th class=\"col_heading level0 col12\" >Tweet Eval Hate</th>\n",
|
289 |
-
" <th class=\"col_heading level0 col13\" >Twitter Complaints</th>\n",
|
290 |
-
" <th class=\"col_heading level0 col14\" >Semiconductor Org Types</th>\n",
|
291 |
-
" </tr>\n",
|
292 |
-
" </thead>\n",
|
293 |
-
" <tbody>\n",
|
294 |
-
" <tr>\n",
|
295 |
-
" <th id=\"T_b6d1f_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n",
|
296 |
-
" <td id=\"T_b6d1f_row0_col0\" class=\"data row0 col0\" >1</td>\n",
|
297 |
-
" <td id=\"T_b6d1f_row0_col1\" class=\"data row0 col1\" >Human baseline (crowdsourced)</td>\n",
|
298 |
-
" <td id=\"T_b6d1f_row0_col2\" class=\"data row0 col2\" >2021-08-27</td>\n",
|
299 |
-
" <td id=\"T_b6d1f_row0_col3\" class=\"data row0 col3\" >0.735</td>\n",
|
300 |
-
" <td id=\"T_b6d1f_row0_col4\" class=\"data row0 col4\" >0.830</td>\n",
|
301 |
-
" <td id=\"T_b6d1f_row0_col5\" class=\"data row0 col5\" >0.607</td>\n",
|
302 |
-
" <td id=\"T_b6d1f_row0_col6\" class=\"data row0 col6\" >0.627</td>\n",
|
303 |
-
" <td id=\"T_b6d1f_row0_col7\" class=\"data row0 col7\" >0.609</td>\n",
|
304 |
-
" <td id=\"T_b6d1f_row0_col8\" class=\"data row0 col8\" >0.857</td>\n",
|
305 |
-
" <td id=\"T_b6d1f_row0_col9\" class=\"data row0 col9\" >0.917</td>\n",
|
306 |
-
" <td id=\"T_b6d1f_row0_col10\" class=\"data row0 col10\" >0.468</td>\n",
|
307 |
-
" <td id=\"T_b6d1f_row0_col11\" class=\"data row0 col11\" >0.646</td>\n",
|
308 |
-
" <td id=\"T_b6d1f_row0_col12\" class=\"data row0 col12\" >0.722</td>\n",
|
309 |
-
" <td id=\"T_b6d1f_row0_col13\" class=\"data row0 col13\" >0.897</td>\n",
|
310 |
-
" <td id=\"T_b6d1f_row0_col14\" class=\"data row0 col14\" >0.908</td>\n",
|
311 |
-
" </tr>\n",
|
312 |
-
" <tr>\n",
|
313 |
-
" <th id=\"T_b6d1f_level0_row1\" class=\"row_heading level0 row1\" >1</th>\n",
|
314 |
-
" <td id=\"T_b6d1f_row1_col0\" class=\"data row1 col0\" >0</td>\n",
|
315 |
-
" <td id=\"T_b6d1f_row1_col1\" class=\"data row1 col1\" >GPT-3 baseline</td>\n",
|
316 |
-
" <td id=\"T_b6d1f_row1_col2\" class=\"data row1 col2\" >2021-08-27</td>\n",
|
317 |
-
" <td id=\"T_b6d1f_row1_col3\" class=\"data row1 col3\" >0.631</td>\n",
|
318 |
-
" <td id=\"T_b6d1f_row1_col4\" class=\"data row1 col4\" >0.688</td>\n",
|
319 |
-
" <td id=\"T_b6d1f_row1_col5\" class=\"data row1 col5\" >0.295</td>\n",
|
320 |
-
" <td id=\"T_b6d1f_row1_col6\" class=\"data row1 col6\" >0.579</td>\n",
|
321 |
-
" <td id=\"T_b6d1f_row1_col7\" class=\"data row1 col7\" >0.667</td>\n",
|
322 |
-
" <td id=\"T_b6d1f_row1_col8\" class=\"data row1 col8\" >0.595</td>\n",
|
323 |
-
" <td id=\"T_b6d1f_row1_col9\" class=\"data row1 col9\" >0.940</td>\n",
|
324 |
-
" <td id=\"T_b6d1f_row1_col10\" class=\"data row1 col10\" >0.535</td>\n",
|
325 |
-
" <td id=\"T_b6d1f_row1_col11\" class=\"data row1 col11\" >0.407</td>\n",
|
326 |
-
" <td id=\"T_b6d1f_row1_col12\" class=\"data row1 col12\" >0.529</td>\n",
|
327 |
-
" <td id=\"T_b6d1f_row1_col13\" class=\"data row1 col13\" >0.822</td>\n",
|
328 |
-
" <td id=\"T_b6d1f_row1_col14\" class=\"data row1 col14\" >0.884</td>\n",
|
329 |
-
" </tr>\n",
|
330 |
-
" </tbody>\n",
|
331 |
-
"</table>\n"
|
332 |
-
],
|
333 |
-
"text/plain": [
|
334 |
-
"<pandas.io.formats.style.Styler at 0x7fba946d44c0>"
|
335 |
-
]
|
336 |
-
},
|
337 |
-
"execution_count": 45,
|
338 |
-
"metadata": {},
|
339 |
-
"output_type": "execute_result"
|
340 |
-
}
|
341 |
-
],
|
342 |
-
"source": [
|
343 |
-
"df.style.format(precision=3)"
|
344 |
-
]
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"cell_type": "code",
|
348 |
-
"execution_count": 47,
|
349 |
-
"id": "094e757c-1c6a-4d01-abb1-872face8c72b",
|
350 |
-
"metadata": {},
|
351 |
-
"outputs": [],
|
352 |
-
"source": [
|
353 |
-
"df2 = df.assign(hack=\"\").set_index(\"hack\")"
|
354 |
-
]
|
355 |
-
},
|
356 |
-
{
|
357 |
-
"cell_type": "code",
|
358 |
-
"execution_count": 48,
|
359 |
-
"id": "2ff434e2-5bf6-453f-8470-28c7b1034154",
|
360 |
-
"metadata": {},
|
361 |
-
"outputs": [
|
362 |
-
{
|
363 |
-
"data": {
|
364 |
-
"text/html": [
|
365 |
-
"<style type=\"text/css\">\n",
|
366 |
-
"</style>\n",
|
367 |
-
"<table id=\"T_59a1f_\">\n",
|
368 |
-
" <thead>\n",
|
369 |
-
" <tr>\n",
|
370 |
-
" <th class=\"blank level0\" > </th>\n",
|
371 |
-
" <th class=\"col_heading level0 col0\" >Rank</th>\n",
|
372 |
-
" <th class=\"col_heading level0 col1\" >Submission</th>\n",
|
373 |
-
" <th class=\"col_heading level0 col2\" >Date</th>\n",
|
374 |
-
" <th class=\"col_heading level0 col3\" >Overall</th>\n",
|
375 |
-
" <th class=\"col_heading level0 col4\" >Ade Corpus V2</th>\n",
|
376 |
-
" <th class=\"col_heading level0 col5\" >Banking 77</th>\n",
|
377 |
-
" <th class=\"col_heading level0 col6\" >Terms Of Service</th>\n",
|
378 |
-
" <th class=\"col_heading level0 col7\" >Tai Safety Research</th>\n",
|
379 |
-
" <th class=\"col_heading level0 col8\" >Neurips Impact Statement Risks</th>\n",
|
380 |
-
" <th class=\"col_heading level0 col9\" >Overruling</th>\n",
|
381 |
-
" <th class=\"col_heading level0 col10\" >Systematic Review Inclusion</th>\n",
|
382 |
-
" <th class=\"col_heading level0 col11\" >One Stop English</th>\n",
|
383 |
-
" <th class=\"col_heading level0 col12\" >Tweet Eval Hate</th>\n",
|
384 |
-
" <th class=\"col_heading level0 col13\" >Twitter Complaints</th>\n",
|
385 |
-
" <th class=\"col_heading level0 col14\" >Semiconductor Org Types</th>\n",
|
386 |
-
" </tr>\n",
|
387 |
-
" <tr>\n",
|
388 |
-
" <th class=\"index_name level0\" >hack</th>\n",
|
389 |
-
" <th class=\"blank col0\" > </th>\n",
|
390 |
-
" <th class=\"blank col1\" > </th>\n",
|
391 |
-
" <th class=\"blank col2\" > </th>\n",
|
392 |
-
" <th class=\"blank col3\" > </th>\n",
|
393 |
-
" <th class=\"blank col4\" > </th>\n",
|
394 |
-
" <th class=\"blank col5\" > </th>\n",
|
395 |
-
" <th class=\"blank col6\" > </th>\n",
|
396 |
-
" <th class=\"blank col7\" > </th>\n",
|
397 |
-
" <th class=\"blank col8\" > </th>\n",
|
398 |
-
" <th class=\"blank col9\" > </th>\n",
|
399 |
-
" <th class=\"blank col10\" > </th>\n",
|
400 |
-
" <th class=\"blank col11\" > </th>\n",
|
401 |
-
" <th class=\"blank col12\" > </th>\n",
|
402 |
-
" <th class=\"blank col13\" > </th>\n",
|
403 |
-
" <th class=\"blank col14\" > </th>\n",
|
404 |
-
" </tr>\n",
|
405 |
-
" </thead>\n",
|
406 |
-
" <tbody>\n",
|
407 |
-
" <tr>\n",
|
408 |
-
" <th id=\"T_59a1f_level0_row0\" class=\"row_heading level0 row0\" ></th>\n",
|
409 |
-
" <td id=\"T_59a1f_row0_col0\" class=\"data row0 col0\" >1</td>\n",
|
410 |
-
" <td id=\"T_59a1f_row0_col1\" class=\"data row0 col1\" >Human baseline (crowdsourced)</td>\n",
|
411 |
-
" <td id=\"T_59a1f_row0_col2\" class=\"data row0 col2\" >2021-08-27</td>\n",
|
412 |
-
" <td id=\"T_59a1f_row0_col3\" class=\"data row0 col3\" >0.735</td>\n",
|
413 |
-
" <td id=\"T_59a1f_row0_col4\" class=\"data row0 col4\" >0.830</td>\n",
|
414 |
-
" <td id=\"T_59a1f_row0_col5\" class=\"data row0 col5\" >0.607</td>\n",
|
415 |
-
" <td id=\"T_59a1f_row0_col6\" class=\"data row0 col6\" >0.627</td>\n",
|
416 |
-
" <td id=\"T_59a1f_row0_col7\" class=\"data row0 col7\" >0.609</td>\n",
|
417 |
-
" <td id=\"T_59a1f_row0_col8\" class=\"data row0 col8\" >0.857</td>\n",
|
418 |
-
" <td id=\"T_59a1f_row0_col9\" class=\"data row0 col9\" >0.917</td>\n",
|
419 |
-
" <td id=\"T_59a1f_row0_col10\" class=\"data row0 col10\" >0.468</td>\n",
|
420 |
-
" <td id=\"T_59a1f_row0_col11\" class=\"data row0 col11\" >0.646</td>\n",
|
421 |
-
" <td id=\"T_59a1f_row0_col12\" class=\"data row0 col12\" >0.722</td>\n",
|
422 |
-
" <td id=\"T_59a1f_row0_col13\" class=\"data row0 col13\" >0.897</td>\n",
|
423 |
-
" <td id=\"T_59a1f_row0_col14\" class=\"data row0 col14\" >0.908</td>\n",
|
424 |
-
" </tr>\n",
|
425 |
-
" <tr>\n",
|
426 |
-
" <th id=\"T_59a1f_level0_row1\" class=\"row_heading level0 row1\" ></th>\n",
|
427 |
-
" <td id=\"T_59a1f_row1_col0\" class=\"data row1 col0\" >0</td>\n",
|
428 |
-
" <td id=\"T_59a1f_row1_col1\" class=\"data row1 col1\" >GPT-3 baseline</td>\n",
|
429 |
-
" <td id=\"T_59a1f_row1_col2\" class=\"data row1 col2\" >2021-08-27</td>\n",
|
430 |
-
" <td id=\"T_59a1f_row1_col3\" class=\"data row1 col3\" >0.631</td>\n",
|
431 |
-
" <td id=\"T_59a1f_row1_col4\" class=\"data row1 col4\" >0.688</td>\n",
|
432 |
-
" <td id=\"T_59a1f_row1_col5\" class=\"data row1 col5\" >0.295</td>\n",
|
433 |
-
" <td id=\"T_59a1f_row1_col6\" class=\"data row1 col6\" >0.579</td>\n",
|
434 |
-
" <td id=\"T_59a1f_row1_col7\" class=\"data row1 col7\" >0.667</td>\n",
|
435 |
-
" <td id=\"T_59a1f_row1_col8\" class=\"data row1 col8\" >0.595</td>\n",
|
436 |
-
" <td id=\"T_59a1f_row1_col9\" class=\"data row1 col9\" >0.940</td>\n",
|
437 |
-
" <td id=\"T_59a1f_row1_col10\" class=\"data row1 col10\" >0.535</td>\n",
|
438 |
-
" <td id=\"T_59a1f_row1_col11\" class=\"data row1 col11\" >0.407</td>\n",
|
439 |
-
" <td id=\"T_59a1f_row1_col12\" class=\"data row1 col12\" >0.529</td>\n",
|
440 |
-
" <td id=\"T_59a1f_row1_col13\" class=\"data row1 col13\" >0.822</td>\n",
|
441 |
-
" <td id=\"T_59a1f_row1_col14\" class=\"data row1 col14\" >0.884</td>\n",
|
442 |
-
" </tr>\n",
|
443 |
-
" </tbody>\n",
|
444 |
-
"</table>\n"
|
445 |
-
],
|
446 |
-
"text/plain": [
|
447 |
-
"<pandas.io.formats.style.Styler at 0x7fba946d4910>"
|
448 |
-
]
|
449 |
-
},
|
450 |
-
"execution_count": 48,
|
451 |
-
"metadata": {},
|
452 |
-
"output_type": "execute_result"
|
453 |
-
}
|
454 |
-
],
|
455 |
-
"source": [
|
456 |
-
"df2.style.format(precision=3)"
|
457 |
-
]
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"cell_type": "code",
|
461 |
-
"execution_count": 186,
|
462 |
-
"id": "8be02c77-bda3-499b-9ac4-d50ec35644a5",
|
463 |
-
"metadata": {},
|
464 |
-
"outputs": [],
|
465 |
-
"source": [
|
466 |
-
"for submission in submissions[-1:]:\n",
|
467 |
-
" submission_id = submission[\"id\"]\n",
|
468 |
-
" response = requests.get(\n",
|
469 |
-
" f\"http://huggingface.co/api/datasets/{submission_id}?full=true\",\n",
|
470 |
-
" headers=header,\n",
|
471 |
-
" )\n",
|
472 |
-
" data = response.json()"
|
473 |
-
]
|
474 |
-
},
|
475 |
-
{
|
476 |
-
"cell_type": "code",
|
477 |
-
"execution_count": 188,
|
478 |
-
"id": "7ab07904-0f7e-401b-96f8-3558433e479a",
|
479 |
-
"metadata": {},
|
480 |
-
"outputs": [
|
481 |
-
{
|
482 |
-
"data": {
|
483 |
-
"text/plain": [
|
484 |
-
"{'Submission': [], 'foo': [], 'bar': []}"
|
485 |
-
]
|
486 |
-
},
|
487 |
-
"execution_count": 188,
|
488 |
-
"metadata": {},
|
489 |
-
"output_type": "execute_result"
|
490 |
-
}
|
491 |
-
],
|
492 |
-
"source": [
|
493 |
-
"{**{\"Submission\": []}, **{\"foo\":[]}, **{\"bar\": []}}"
|
494 |
-
]
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"cell_type": "code",
|
498 |
-
"execution_count": 191,
|
499 |
-
"id": "69ffb778-09cf-4eb8-ab95-739700d68420",
|
500 |
-
"metadata": {},
|
501 |
-
"outputs": [
|
502 |
-
{
|
503 |
-
"data": {
|
504 |
-
"text/plain": [
|
505 |
-
"'f5a21c3fcb58ac17c8a47cfffd509b55cbad7ccf-1629986165000000000'"
|
506 |
-
]
|
507 |
-
},
|
508 |
-
"execution_count": 191,
|
509 |
-
"metadata": {},
|
510 |
-
"output_type": "execute_result"
|
511 |
-
}
|
512 |
-
],
|
513 |
-
"source": [
|
514 |
-
"sub_id = data[\"card_data\"][\"submission_id\"]\n",
|
515 |
-
"sub_id"
|
516 |
-
]
|
517 |
-
},
|
518 |
-
{
|
519 |
-
"cell_type": "code",
|
520 |
-
"execution_count": 195,
|
521 |
-
"id": "f7c3e8c0-68c7-4bad-802b-1b39703e100d",
|
522 |
-
"metadata": {},
|
523 |
-
"outputs": [
|
524 |
-
{
|
525 |
-
"data": {
|
526 |
-
"text/plain": [
|
527 |
-
"'1629986165000000000'"
|
528 |
-
]
|
529 |
-
},
|
530 |
-
"execution_count": 195,
|
531 |
-
"metadata": {},
|
532 |
-
"output_type": "execute_result"
|
533 |
-
}
|
534 |
-
],
|
535 |
-
"source": [
|
536 |
-
"t = sub_id.split(\"-\")[-1]\n",
|
537 |
-
"t"
|
538 |
-
]
|
539 |
-
},
|
540 |
-
{
|
541 |
-
"cell_type": "code",
|
542 |
-
"execution_count": 197,
|
543 |
-
"id": "34a7483c-0b00-42a7-99b9-ee6bdf34048a",
|
544 |
-
"metadata": {},
|
545 |
-
"outputs": [
|
546 |
-
{
|
547 |
-
"data": {
|
548 |
-
"text/plain": [
|
549 |
-
"Timestamp('2021-08-26 13:56:05')"
|
550 |
-
]
|
551 |
-
},
|
552 |
-
"execution_count": 197,
|
553 |
-
"metadata": {},
|
554 |
-
"output_type": "execute_result"
|
555 |
-
}
|
556 |
-
],
|
557 |
-
"source": [
|
558 |
-
"d = pd.to_datetime(int(t))\n",
|
559 |
-
"d"
|
560 |
-
]
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"cell_type": "code",
|
564 |
-
"execution_count": 201,
|
565 |
-
"id": "95f1ecff-025f-4b42-8761-2c0964dfac5f",
|
566 |
-
"metadata": {},
|
567 |
-
"outputs": [],
|
568 |
-
"source": [
|
569 |
-
"import datetime"
|
570 |
-
]
|
571 |
-
},
|
572 |
-
{
|
573 |
-
"cell_type": "code",
|
574 |
-
"execution_count": 205,
|
575 |
-
"id": "c606cfea-165d-4b58-ba37-6fc9b06795cf",
|
576 |
-
"metadata": {},
|
577 |
-
"outputs": [
|
578 |
-
{
|
579 |
-
"data": {
|
580 |
-
"text/html": [
|
581 |
-
"<div>\n",
|
582 |
-
"<style scoped>\n",
|
583 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
584 |
-
" vertical-align: middle;\n",
|
585 |
-
" }\n",
|
586 |
-
"\n",
|
587 |
-
" .dataframe tbody tr th {\n",
|
588 |
-
" vertical-align: top;\n",
|
589 |
-
" }\n",
|
590 |
-
"\n",
|
591 |
-
" .dataframe thead th {\n",
|
592 |
-
" text-align: right;\n",
|
593 |
-
" }\n",
|
594 |
-
"</style>\n",
|
595 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
596 |
-
" <thead>\n",
|
597 |
-
" <tr style=\"text-align: right;\">\n",
|
598 |
-
" <th></th>\n",
|
599 |
-
" <th>d</th>\n",
|
600 |
-
" </tr>\n",
|
601 |
-
" </thead>\n",
|
602 |
-
" <tbody>\n",
|
603 |
-
" <tr>\n",
|
604 |
-
" <th>0</th>\n",
|
605 |
-
" <td>2021-08-26</td>\n",
|
606 |
-
" </tr>\n",
|
607 |
-
" </tbody>\n",
|
608 |
-
"</table>\n",
|
609 |
-
"</div>"
|
610 |
-
],
|
611 |
-
"text/plain": [
|
612 |
-
" d\n",
|
613 |
-
"0 2021-08-26"
|
614 |
-
]
|
615 |
-
},
|
616 |
-
"execution_count": 205,
|
617 |
-
"metadata": {},
|
618 |
-
"output_type": "execute_result"
|
619 |
-
}
|
620 |
-
],
|
621 |
-
"source": [
|
622 |
-
"pd.DataFrame({\"d\":[datetime.datetime.date(d)]})"
|
623 |
-
]
|
624 |
-
},
|
625 |
-
{
|
626 |
-
"cell_type": "code",
|
627 |
-
"execution_count": 147,
|
628 |
-
"id": "eebefd5a-6451-44b9-bc0f-d0663f321e34",
|
629 |
-
"metadata": {},
|
630 |
-
"outputs": [],
|
631 |
-
"source": [
|
632 |
-
"timestamp = data[\"lastModified\"]"
|
633 |
-
]
|
634 |
-
},
|
635 |
-
{
|
636 |
-
"cell_type": "code",
|
637 |
-
"execution_count": 149,
|
638 |
-
"id": "bf663ca3-12e8-4178-9aef-aba46621477a",
|
639 |
-
"metadata": {},
|
640 |
-
"outputs": [],
|
641 |
-
"source": [
|
642 |
-
"import pandas as pd"
|
643 |
-
]
|
644 |
-
},
|
645 |
-
{
|
646 |
-
"cell_type": "code",
|
647 |
-
"execution_count": 160,
|
648 |
-
"id": "4723aeb6-3993-49b1-b779-c1394b54d776",
|
649 |
-
"metadata": {},
|
650 |
-
"outputs": [
|
651 |
-
{
|
652 |
-
"data": {
|
653 |
-
"text/plain": [
|
654 |
-
"Timestamp('2021-08-04 22:52:57+0000', tz='UTC')"
|
655 |
-
]
|
656 |
-
},
|
657 |
-
"execution_count": 160,
|
658 |
-
"metadata": {},
|
659 |
-
"output_type": "execute_result"
|
660 |
-
}
|
661 |
-
],
|
662 |
-
"source": [
|
663 |
-
"t = pd.to_datetime(timestamp)\n",
|
664 |
-
"t"
|
665 |
-
]
|
666 |
-
},
|
667 |
-
{
|
668 |
-
"cell_type": "code",
|
669 |
-
"execution_count": 157,
|
670 |
-
"id": "cbcc2bf8-e2c8-449c-9f00-38ed80e46ae0",
|
671 |
-
"metadata": {},
|
672 |
-
"outputs": [
|
673 |
-
{
|
674 |
-
"data": {
|
675 |
-
"text/plain": [
|
676 |
-
"'2021-08-04T22:52:57.000Z'"
|
677 |
-
]
|
678 |
-
},
|
679 |
-
"execution_count": 157,
|
680 |
-
"metadata": {},
|
681 |
-
"output_type": "execute_result"
|
682 |
-
}
|
683 |
-
],
|
684 |
-
"source": [
|
685 |
-
"timestamp"
|
686 |
-
]
|
687 |
-
},
|
688 |
-
{
|
689 |
-
"cell_type": "code",
|
690 |
-
"execution_count": 161,
|
691 |
-
"id": "177574a9-327e-4999-a1db-c316bb741c8c",
|
692 |
-
"metadata": {},
|
693 |
-
"outputs": [],
|
694 |
-
"source": [
|
695 |
-
"t_int = int(t.timestamp() * 10 **9)"
|
696 |
-
]
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"cell_type": "code",
|
700 |
-
"execution_count": 162,
|
701 |
-
"id": "b3aa4f70-50af-47b3-a492-c77f65266a5b",
|
702 |
-
"metadata": {},
|
703 |
-
"outputs": [
|
704 |
-
{
|
705 |
-
"data": {
|
706 |
-
"text/plain": [
|
707 |
-
"Timestamp('2021-08-04 22:52:57')"
|
708 |
-
]
|
709 |
-
},
|
710 |
-
"execution_count": 162,
|
711 |
-
"metadata": {},
|
712 |
-
"output_type": "execute_result"
|
713 |
-
}
|
714 |
-
],
|
715 |
-
"source": [
|
716 |
-
"pd.to_datetime(t_int)"
|
717 |
-
]
|
718 |
-
},
|
719 |
-
{
|
720 |
-
"cell_type": "code",
|
721 |
-
"execution_count": 96,
|
722 |
-
"id": "ae7c9100-a630-4b4e-a060-331914f86055",
|
723 |
-
"metadata": {},
|
724 |
-
"outputs": [],
|
725 |
-
"source": [
|
726 |
-
"submissions = download_submissions()"
|
727 |
-
]
|
728 |
-
},
|
729 |
-
{
|
730 |
-
"cell_type": "code",
|
731 |
-
"execution_count": 97,
|
732 |
-
"id": "831077a1-7f44-4d31-94b3-49257a62c5f7",
|
733 |
-
"metadata": {},
|
734 |
-
"outputs": [
|
735 |
-
{
|
736 |
-
"data": {
|
737 |
-
"text/plain": [
|
738 |
-
"16"
|
739 |
-
]
|
740 |
-
},
|
741 |
-
"execution_count": 97,
|
742 |
-
"metadata": {},
|
743 |
-
"output_type": "execute_result"
|
744 |
-
}
|
745 |
-
],
|
746 |
-
"source": [
|
747 |
-
"len(submissions)"
|
748 |
-
]
|
749 |
-
},
|
750 |
-
{
|
751 |
-
"cell_type": "code",
|
752 |
-
"execution_count": 35,
|
753 |
-
"id": "4a8a9ff9-7f94-4abb-8194-9d570ad2216b",
|
754 |
-
"metadata": {},
|
755 |
-
"outputs": [
|
756 |
-
{
|
757 |
-
"data": {
|
758 |
-
"text/plain": [
|
759 |
-
"[{'id': 'autonlp/autonlp-benchmark-raft-ought__raft-ought__raft-dummy-predictions-642',\n",
|
760 |
-
" 'private': True,\n",
|
761 |
-
" 'tags': ['benchmark:ought/raft',\n",
|
762 |
-
" 'type:evaluation',\n",
|
763 |
-
" 'submission_dataset:ought/raft-dummy-predictions',\n",
|
764 |
-
" 'tags:autonlp',\n",
|
765 |
-
" 'tags:evaluation',\n",
|
766 |
-
" 'tags:benchmark'],\n",
|
767 |
-
" 'author': 'autonlp',\n",
|
768 |
-
" 'key': ''}]"
|
769 |
-
]
|
770 |
-
},
|
771 |
-
"execution_count": 35,
|
772 |
-
"metadata": {},
|
773 |
-
"output_type": "execute_result"
|
774 |
-
}
|
775 |
-
],
|
776 |
-
"source": [
|
777 |
-
"submissions[-1:]"
|
778 |
-
]
|
779 |
-
},
|
780 |
-
{
|
781 |
-
"cell_type": "code",
|
782 |
-
"execution_count": 98,
|
783 |
-
"id": "2d6e56cb-fca3-4e9e-9a8b-9d2e26816773",
|
784 |
-
"metadata": {},
|
785 |
-
"outputs": [],
|
786 |
-
"source": [
|
787 |
-
"df = format_submissions(submissions[-2:])"
|
788 |
-
]
|
789 |
-
},
|
790 |
-
{
|
791 |
-
"cell_type": "code",
|
792 |
-
"execution_count": 109,
|
793 |
-
"id": "7d8a3402-f7b8-4edb-8d1e-afb704dc3c67",
|
794 |
-
"metadata": {},
|
795 |
-
"outputs": [
|
796 |
-
{
|
797 |
-
"data": {
|
798 |
-
"text/html": [
|
799 |
-
"<div>\n",
|
800 |
-
"<style scoped>\n",
|
801 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
802 |
-
" vertical-align: middle;\n",
|
803 |
-
" }\n",
|
804 |
-
"\n",
|
805 |
-
" .dataframe tbody tr th {\n",
|
806 |
-
" vertical-align: top;\n",
|
807 |
-
" }\n",
|
808 |
-
"\n",
|
809 |
-
" .dataframe thead th {\n",
|
810 |
-
" text-align: right;\n",
|
811 |
-
" }\n",
|
812 |
-
"</style>\n",
|
813 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
814 |
-
" <thead>\n",
|
815 |
-
" <tr style=\"text-align: right;\">\n",
|
816 |
-
" <th></th>\n",
|
817 |
-
" <th>Submission</th>\n",
|
818 |
-
" <th>Overall</th>\n",
|
819 |
-
" <th>banking_77</th>\n",
|
820 |
-
" <th>medical_subdomain_of_clinical_notes</th>\n",
|
821 |
-
" <th>overruling</th>\n",
|
822 |
-
" <th>gpai_initiatives</th>\n",
|
823 |
-
" <th>semiconductor_org_types</th>\n",
|
824 |
-
" <th>twitter_complaints</th>\n",
|
825 |
-
" <th>neurips_impact_statement_risks</th>\n",
|
826 |
-
" <th>systematic_review_inclusion</th>\n",
|
827 |
-
" <th>terms_of_service</th>\n",
|
828 |
-
" <th>tai_safety_research</th>\n",
|
829 |
-
" <th>one_stop_english</th>\n",
|
830 |
-
" </tr>\n",
|
831 |
-
" </thead>\n",
|
832 |
-
" <tbody>\n",
|
833 |
-
" <tr>\n",
|
834 |
-
" <th>1</th>\n",
|
835 |
-
" <td>lewtun/my-raft-dummy-predictions</td>\n",
|
836 |
-
" <td>0.605079</td>\n",
|
837 |
-
" <td>0.948903</td>\n",
|
838 |
-
" <td>0.716526</td>\n",
|
839 |
-
" <td>0.064395</td>\n",
|
840 |
-
" <td>0.529422</td>\n",
|
841 |
-
" <td>0.643723</td>\n",
|
842 |
-
" <td>0.873478</td>\n",
|
843 |
-
" <td>0.756919</td>\n",
|
844 |
-
" <td>0.381609</td>\n",
|
845 |
-
" <td>0.461302</td>\n",
|
846 |
-
" <td>0.624133</td>\n",
|
847 |
-
" <td>0.655457</td>\n",
|
848 |
-
" </tr>\n",
|
849 |
-
" <tr>\n",
|
850 |
-
" <th>0</th>\n",
|
851 |
-
" <td>ought/raft-dummy-predictions</td>\n",
|
852 |
-
" <td>0.407345</td>\n",
|
853 |
-
" <td>0.009504</td>\n",
|
854 |
-
" <td>0.591213</td>\n",
|
855 |
-
" <td>0.552390</td>\n",
|
856 |
-
" <td>0.594769</td>\n",
|
857 |
-
" <td>0.339822</td>\n",
|
858 |
-
" <td>0.728116</td>\n",
|
859 |
-
" <td>0.878378</td>\n",
|
860 |
-
" <td>0.291842</td>\n",
|
861 |
-
" <td>0.144772</td>\n",
|
862 |
-
" <td>0.089622</td>\n",
|
863 |
-
" <td>0.260366</td>\n",
|
864 |
-
" </tr>\n",
|
865 |
-
" </tbody>\n",
|
866 |
-
"</table>\n",
|
867 |
-
"</div>"
|
868 |
-
],
|
869 |
-
"text/plain": [
|
870 |
-
" Submission Overall banking_77 \\\n",
|
871 |
-
"1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
|
872 |
-
"0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
|
873 |
-
"\n",
|
874 |
-
" medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
|
875 |
-
"1 0.716526 0.064395 0.529422 \n",
|
876 |
-
"0 0.591213 0.552390 0.594769 \n",
|
877 |
-
"\n",
|
878 |
-
" semiconductor_org_types twitter_complaints \\\n",
|
879 |
-
"1 0.643723 0.873478 \n",
|
880 |
-
"0 0.339822 0.728116 \n",
|
881 |
-
"\n",
|
882 |
-
" neurips_impact_statement_risks systematic_review_inclusion \\\n",
|
883 |
-
"1 0.756919 0.381609 \n",
|
884 |
-
"0 0.878378 0.291842 \n",
|
885 |
-
"\n",
|
886 |
-
" terms_of_service tai_safety_research one_stop_english \n",
|
887 |
-
"1 0.461302 0.624133 0.655457 \n",
|
888 |
-
"0 0.144772 0.089622 0.260366 "
|
889 |
-
]
|
890 |
-
},
|
891 |
-
"execution_count": 109,
|
892 |
-
"metadata": {},
|
893 |
-
"output_type": "execute_result"
|
894 |
-
}
|
895 |
-
],
|
896 |
-
"source": [
|
897 |
-
"df"
|
898 |
-
]
|
899 |
-
},
|
900 |
-
{
|
901 |
-
"cell_type": "code",
|
902 |
-
"execution_count": 100,
|
903 |
-
"id": "f60f453b-2457-4597-9eee-324d4c3a2f2e",
|
904 |
-
"metadata": {},
|
905 |
-
"outputs": [],
|
906 |
-
"source": [
|
907 |
-
"df.insert(1, \"Overall\", df[TASKS].mean(axis=1))"
|
908 |
-
]
|
909 |
-
},
|
910 |
-
{
|
911 |
-
"cell_type": "code",
|
912 |
-
"execution_count": 110,
|
913 |
-
"id": "1fd83f7a-b554-4e7d-aef6-4338b01f3eec",
|
914 |
-
"metadata": {},
|
915 |
-
"outputs": [
|
916 |
-
{
|
917 |
-
"data": {
|
918 |
-
"text/html": [
|
919 |
-
"<div>\n",
|
920 |
-
"<style scoped>\n",
|
921 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
922 |
-
" vertical-align: middle;\n",
|
923 |
-
" }\n",
|
924 |
-
"\n",
|
925 |
-
" .dataframe tbody tr th {\n",
|
926 |
-
" vertical-align: top;\n",
|
927 |
-
" }\n",
|
928 |
-
"\n",
|
929 |
-
" .dataframe thead th {\n",
|
930 |
-
" text-align: right;\n",
|
931 |
-
" }\n",
|
932 |
-
"</style>\n",
|
933 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
934 |
-
" <thead>\n",
|
935 |
-
" <tr style=\"text-align: right;\">\n",
|
936 |
-
" <th></th>\n",
|
937 |
-
" <th>Rank</th>\n",
|
938 |
-
" <th>Submission</th>\n",
|
939 |
-
" <th>Overall</th>\n",
|
940 |
-
" <th>banking_77</th>\n",
|
941 |
-
" <th>medical_subdomain_of_clinical_notes</th>\n",
|
942 |
-
" <th>overruling</th>\n",
|
943 |
-
" <th>gpai_initiatives</th>\n",
|
944 |
-
" <th>semiconductor_org_types</th>\n",
|
945 |
-
" <th>twitter_complaints</th>\n",
|
946 |
-
" <th>neurips_impact_statement_risks</th>\n",
|
947 |
-
" <th>systematic_review_inclusion</th>\n",
|
948 |
-
" <th>terms_of_service</th>\n",
|
949 |
-
" <th>tai_safety_research</th>\n",
|
950 |
-
" <th>one_stop_english</th>\n",
|
951 |
-
" </tr>\n",
|
952 |
-
" </thead>\n",
|
953 |
-
" <tbody>\n",
|
954 |
-
" <tr>\n",
|
955 |
-
" <th>0</th>\n",
|
956 |
-
" <td>1</td>\n",
|
957 |
-
" <td>lewtun/my-raft-dummy-predictions</td>\n",
|
958 |
-
" <td>0.605079</td>\n",
|
959 |
-
" <td>0.948903</td>\n",
|
960 |
-
" <td>0.716526</td>\n",
|
961 |
-
" <td>0.064395</td>\n",
|
962 |
-
" <td>0.529422</td>\n",
|
963 |
-
" <td>0.643723</td>\n",
|
964 |
-
" <td>0.873478</td>\n",
|
965 |
-
" <td>0.756919</td>\n",
|
966 |
-
" <td>0.381609</td>\n",
|
967 |
-
" <td>0.461302</td>\n",
|
968 |
-
" <td>0.624133</td>\n",
|
969 |
-
" <td>0.655457</td>\n",
|
970 |
-
" </tr>\n",
|
971 |
-
" <tr>\n",
|
972 |
-
" <th>1</th>\n",
|
973 |
-
" <td>0</td>\n",
|
974 |
-
" <td>ought/raft-dummy-predictions</td>\n",
|
975 |
-
" <td>0.407345</td>\n",
|
976 |
-
" <td>0.009504</td>\n",
|
977 |
-
" <td>0.591213</td>\n",
|
978 |
-
" <td>0.552390</td>\n",
|
979 |
-
" <td>0.594769</td>\n",
|
980 |
-
" <td>0.339822</td>\n",
|
981 |
-
" <td>0.728116</td>\n",
|
982 |
-
" <td>0.878378</td>\n",
|
983 |
-
" <td>0.291842</td>\n",
|
984 |
-
" <td>0.144772</td>\n",
|
985 |
-
" <td>0.089622</td>\n",
|
986 |
-
" <td>0.260366</td>\n",
|
987 |
-
" </tr>\n",
|
988 |
-
" </tbody>\n",
|
989 |
-
"</table>\n",
|
990 |
-
"</div>"
|
991 |
-
],
|
992 |
-
"text/plain": [
|
993 |
-
" Rank Submission Overall banking_77 \\\n",
|
994 |
-
"0 1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
|
995 |
-
"1 0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
|
996 |
-
"\n",
|
997 |
-
" medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
|
998 |
-
"0 0.716526 0.064395 0.529422 \n",
|
999 |
-
"1 0.591213 0.552390 0.594769 \n",
|
1000 |
-
"\n",
|
1001 |
-
" semiconductor_org_types twitter_complaints \\\n",
|
1002 |
-
"0 0.643723 0.873478 \n",
|
1003 |
-
"1 0.339822 0.728116 \n",
|
1004 |
-
"\n",
|
1005 |
-
" neurips_impact_statement_risks systematic_review_inclusion \\\n",
|
1006 |
-
"0 0.756919 0.381609 \n",
|
1007 |
-
"1 0.878378 0.291842 \n",
|
1008 |
-
"\n",
|
1009 |
-
" terms_of_service tai_safety_research one_stop_english \n",
|
1010 |
-
"0 0.461302 0.624133 0.655457 \n",
|
1011 |
-
"1 0.144772 0.089622 0.260366 "
|
1012 |
-
]
|
1013 |
-
},
|
1014 |
-
"execution_count": 110,
|
1015 |
-
"metadata": {},
|
1016 |
-
"output_type": "execute_result"
|
1017 |
-
}
|
1018 |
-
],
|
1019 |
-
"source": [
|
1020 |
-
"df.copy().sort_values(\"Overall\", ascending=False).reset_index().rename(columns={\"index\":\"Rank\"})"
|
1021 |
-
]
|
1022 |
-
},
|
1023 |
-
{
|
1024 |
-
"cell_type": "code",
|
1025 |
-
"execution_count": 119,
|
1026 |
-
"id": "e1262ff5-6ea3-41ca-affc-b106dd9df5fd",
|
1027 |
-
"metadata": {},
|
1028 |
-
"outputs": [],
|
1029 |
-
"source": [
|
1030 |
-
"task_names = [\" \".join(t.capitalize() for t in task.split(\"_\")) for task in TASKS]"
|
1031 |
-
]
|
1032 |
-
},
|
1033 |
-
{
|
1034 |
-
"cell_type": "code",
|
1035 |
-
"execution_count": 121,
|
1036 |
-
"id": "45d74b9c-c472-4494-aadc-909976d13b08",
|
1037 |
-
"metadata": {},
|
1038 |
-
"outputs": [
|
1039 |
-
{
|
1040 |
-
"data": {
|
1041 |
-
"text/html": [
|
1042 |
-
"<div>\n",
|
1043 |
-
"<style scoped>\n",
|
1044 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1045 |
-
" vertical-align: middle;\n",
|
1046 |
-
" }\n",
|
1047 |
-
"\n",
|
1048 |
-
" .dataframe tbody tr th {\n",
|
1049 |
-
" vertical-align: top;\n",
|
1050 |
-
" }\n",
|
1051 |
-
"\n",
|
1052 |
-
" .dataframe thead th {\n",
|
1053 |
-
" text-align: right;\n",
|
1054 |
-
" }\n",
|
1055 |
-
"</style>\n",
|
1056 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1057 |
-
" <thead>\n",
|
1058 |
-
" <tr style=\"text-align: right;\">\n",
|
1059 |
-
" <th></th>\n",
|
1060 |
-
" <th>Submission</th>\n",
|
1061 |
-
" <th>Overall</th>\n",
|
1062 |
-
" <th>Banking 77</th>\n",
|
1063 |
-
" <th>Medical Subdomain Of Clinical Notes</th>\n",
|
1064 |
-
" <th>Overruling</th>\n",
|
1065 |
-
" <th>Gpai Initiatives</th>\n",
|
1066 |
-
" <th>Semiconductor Org Types</th>\n",
|
1067 |
-
" <th>Twitter Complaints</th>\n",
|
1068 |
-
" <th>Neurips Impact Statement Risks</th>\n",
|
1069 |
-
" <th>Systematic Review Inclusion</th>\n",
|
1070 |
-
" <th>Terms Of Service</th>\n",
|
1071 |
-
" <th>Tai Safety Research</th>\n",
|
1072 |
-
" <th>One Stop English</th>\n",
|
1073 |
-
" </tr>\n",
|
1074 |
-
" </thead>\n",
|
1075 |
-
" <tbody>\n",
|
1076 |
-
" <tr>\n",
|
1077 |
-
" <th>1</th>\n",
|
1078 |
-
" <td>lewtun/my-raft-dummy-predictions</td>\n",
|
1079 |
-
" <td>0.605079</td>\n",
|
1080 |
-
" <td>0.948903</td>\n",
|
1081 |
-
" <td>0.716526</td>\n",
|
1082 |
-
" <td>0.064395</td>\n",
|
1083 |
-
" <td>0.529422</td>\n",
|
1084 |
-
" <td>0.643723</td>\n",
|
1085 |
-
" <td>0.873478</td>\n",
|
1086 |
-
" <td>0.756919</td>\n",
|
1087 |
-
" <td>0.381609</td>\n",
|
1088 |
-
" <td>0.461302</td>\n",
|
1089 |
-
" <td>0.624133</td>\n",
|
1090 |
-
" <td>0.655457</td>\n",
|
1091 |
-
" </tr>\n",
|
1092 |
-
" <tr>\n",
|
1093 |
-
" <th>0</th>\n",
|
1094 |
-
" <td>ought/raft-dummy-predictions</td>\n",
|
1095 |
-
" <td>0.407345</td>\n",
|
1096 |
-
" <td>0.009504</td>\n",
|
1097 |
-
" <td>0.591213</td>\n",
|
1098 |
-
" <td>0.552390</td>\n",
|
1099 |
-
" <td>0.594769</td>\n",
|
1100 |
-
" <td>0.339822</td>\n",
|
1101 |
-
" <td>0.728116</td>\n",
|
1102 |
-
" <td>0.878378</td>\n",
|
1103 |
-
" <td>0.291842</td>\n",
|
1104 |
-
" <td>0.144772</td>\n",
|
1105 |
-
" <td>0.089622</td>\n",
|
1106 |
-
" <td>0.260366</td>\n",
|
1107 |
-
" </tr>\n",
|
1108 |
-
" </tbody>\n",
|
1109 |
-
"</table>\n",
|
1110 |
-
"</div>"
|
1111 |
-
],
|
1112 |
-
"text/plain": [
|
1113 |
-
" Submission Overall Banking 77 \\\n",
|
1114 |
-
"1 lewtun/my-raft-dummy-predictions 0.605079 0.948903 \n",
|
1115 |
-
"0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
|
1116 |
-
"\n",
|
1117 |
-
" Medical Subdomain Of Clinical Notes Overruling Gpai Initiatives \\\n",
|
1118 |
-
"1 0.716526 0.064395 0.529422 \n",
|
1119 |
-
"0 0.591213 0.552390 0.594769 \n",
|
1120 |
-
"\n",
|
1121 |
-
" Semiconductor Org Types Twitter Complaints \\\n",
|
1122 |
-
"1 0.643723 0.873478 \n",
|
1123 |
-
"0 0.339822 0.728116 \n",
|
1124 |
-
"\n",
|
1125 |
-
" Neurips Impact Statement Risks Systematic Review Inclusion \\\n",
|
1126 |
-
"1 0.756919 0.381609 \n",
|
1127 |
-
"0 0.878378 0.291842 \n",
|
1128 |
-
"\n",
|
1129 |
-
" Terms Of Service Tai Safety Research One Stop English \n",
|
1130 |
-
"1 0.461302 0.624133 0.655457 \n",
|
1131 |
-
"0 0.144772 0.089622 0.260366 "
|
1132 |
-
]
|
1133 |
-
},
|
1134 |
-
"execution_count": 121,
|
1135 |
-
"metadata": {},
|
1136 |
-
"output_type": "execute_result"
|
1137 |
-
}
|
1138 |
-
],
|
1139 |
-
"source": [
|
1140 |
-
"df.rename(columns={k:v for k,v in zip(TASKS, task_names)})"
|
1141 |
-
]
|
1142 |
-
},
|
1143 |
-
{
|
1144 |
-
"cell_type": "code",
|
1145 |
-
"execution_count": 88,
|
1146 |
-
"id": "d31c2bde-1645-4c1b-982b-c9daac40311d",
|
1147 |
-
"metadata": {},
|
1148 |
-
"outputs": [
|
1149 |
-
{
|
1150 |
-
"data": {
|
1151 |
-
"text/html": [
|
1152 |
-
"<div>\n",
|
1153 |
-
"<style scoped>\n",
|
1154 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1155 |
-
" vertical-align: middle;\n",
|
1156 |
-
" }\n",
|
1157 |
-
"\n",
|
1158 |
-
" .dataframe tbody tr th {\n",
|
1159 |
-
" vertical-align: top;\n",
|
1160 |
-
" }\n",
|
1161 |
-
"\n",
|
1162 |
-
" .dataframe thead th {\n",
|
1163 |
-
" text-align: right;\n",
|
1164 |
-
" }\n",
|
1165 |
-
"</style>\n",
|
1166 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1167 |
-
" <thead>\n",
|
1168 |
-
" <tr style=\"text-align: right;\">\n",
|
1169 |
-
" <th></th>\n",
|
1170 |
-
" <th>Submission</th>\n",
|
1171 |
-
" <th>Overall</th>\n",
|
1172 |
-
" <th>banking_77</th>\n",
|
1173 |
-
" <th>medical_subdomain_of_clinical_notes</th>\n",
|
1174 |
-
" <th>overruling</th>\n",
|
1175 |
-
" <th>gpai_initiatives</th>\n",
|
1176 |
-
" <th>semiconductor_org_types</th>\n",
|
1177 |
-
" <th>twitter_complaints</th>\n",
|
1178 |
-
" <th>neurips_impact_statement_risks</th>\n",
|
1179 |
-
" <th>systematic_review_inclusion</th>\n",
|
1180 |
-
" <th>terms_of_service</th>\n",
|
1181 |
-
" <th>tai_safety_research</th>\n",
|
1182 |
-
" <th>one_stop_english</th>\n",
|
1183 |
-
" </tr>\n",
|
1184 |
-
" </thead>\n",
|
1185 |
-
" <tbody>\n",
|
1186 |
-
" <tr>\n",
|
1187 |
-
" <th>0</th>\n",
|
1188 |
-
" <td>ought/raft-dummy-predictions</td>\n",
|
1189 |
-
" <td>0.407345</td>\n",
|
1190 |
-
" <td>0.009504</td>\n",
|
1191 |
-
" <td>0.591213</td>\n",
|
1192 |
-
" <td>0.55239</td>\n",
|
1193 |
-
" <td>0.594769</td>\n",
|
1194 |
-
" <td>0.339822</td>\n",
|
1195 |
-
" <td>0.728116</td>\n",
|
1196 |
-
" <td>0.878378</td>\n",
|
1197 |
-
" <td>0.291842</td>\n",
|
1198 |
-
" <td>0.144772</td>\n",
|
1199 |
-
" <td>0.089622</td>\n",
|
1200 |
-
" <td>0.260366</td>\n",
|
1201 |
-
" </tr>\n",
|
1202 |
-
" </tbody>\n",
|
1203 |
-
"</table>\n",
|
1204 |
-
"</div>"
|
1205 |
-
],
|
1206 |
-
"text/plain": [
|
1207 |
-
" Submission Overall banking_77 \\\n",
|
1208 |
-
"0 ought/raft-dummy-predictions 0.407345 0.009504 \n",
|
1209 |
-
"\n",
|
1210 |
-
" medical_subdomain_of_clinical_notes overruling gpai_initiatives \\\n",
|
1211 |
-
"0 0.591213 0.55239 0.594769 \n",
|
1212 |
-
"\n",
|
1213 |
-
" semiconductor_org_types twitter_complaints \\\n",
|
1214 |
-
"0 0.339822 0.728116 \n",
|
1215 |
-
"\n",
|
1216 |
-
" neurips_impact_statement_risks systematic_review_inclusion \\\n",
|
1217 |
-
"0 0.878378 0.291842 \n",
|
1218 |
-
"\n",
|
1219 |
-
" terms_of_service tai_safety_research one_stop_english \n",
|
1220 |
-
"0 0.144772 0.089622 0.260366 "
|
1221 |
-
]
|
1222 |
-
},
|
1223 |
-
"execution_count": 88,
|
1224 |
-
"metadata": {},
|
1225 |
-
"output_type": "execute_result"
|
1226 |
-
}
|
1227 |
-
],
|
1228 |
-
"source": [
|
1229 |
-
"df.sort_values(\"Overall\")"
|
1230 |
-
]
|
1231 |
-
},
|
1232 |
-
{
|
1233 |
-
"cell_type": "code",
|
1234 |
-
"execution_count": null,
|
1235 |
-
"id": "4df33059-020a-43cf-aa3a-de6939268cc7",
|
1236 |
-
"metadata": {},
|
1237 |
-
"outputs": [],
|
1238 |
-
"source": [
|
1239 |
-
"df[\"Overall\"] = df.mean()"
|
1240 |
-
]
|
1241 |
-
},
|
1242 |
-
{
|
1243 |
-
"cell_type": "code",
|
1244 |
-
"execution_count": null,
|
1245 |
-
"id": "327539f3-3bf7-4a2e-ac10-89973a2ba37f",
|
1246 |
-
"metadata": {},
|
1247 |
-
"outputs": [],
|
1248 |
-
"source": [
|
1249 |
-
"df[\"Submission\"]"
|
1250 |
-
]
|
1251 |
-
},
|
1252 |
-
{
|
1253 |
-
"cell_type": "code",
|
1254 |
-
"execution_count": 38,
|
1255 |
-
"id": "f07ec556-2ebf-400e-85f7-c978d03b0dc1",
|
1256 |
-
"metadata": {},
|
1257 |
-
"outputs": [],
|
1258 |
-
"source": [
|
1259 |
-
"data = format_submissions(submissions[-1:])"
|
1260 |
-
]
|
1261 |
-
},
|
1262 |
-
{
|
1263 |
-
"cell_type": "code",
|
1264 |
-
"execution_count": 48,
|
1265 |
-
"id": "a982e024-ab16-4752-984a-5368fa238f1d",
|
1266 |
-
"metadata": {},
|
1267 |
-
"outputs": [
|
1268 |
-
{
|
1269 |
-
"data": {
|
1270 |
-
"text/html": [
|
1271 |
-
"<div>\n",
|
1272 |
-
"<style scoped>\n",
|
1273 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1274 |
-
" vertical-align: middle;\n",
|
1275 |
-
" }\n",
|
1276 |
-
"\n",
|
1277 |
-
" .dataframe tbody tr th {\n",
|
1278 |
-
" vertical-align: top;\n",
|
1279 |
-
" }\n",
|
1280 |
-
"\n",
|
1281 |
-
" .dataframe thead th {\n",
|
1282 |
-
" text-align: right;\n",
|
1283 |
-
" }\n",
|
1284 |
-
"</style>\n",
|
1285 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1286 |
-
" <thead>\n",
|
1287 |
-
" <tr style=\"text-align: right;\">\n",
|
1288 |
-
" <th></th>\n",
|
1289 |
-
" <th>bank</th>\n",
|
1290 |
-
" </tr>\n",
|
1291 |
-
" </thead>\n",
|
1292 |
-
" <tbody>\n",
|
1293 |
-
" <tr>\n",
|
1294 |
-
" <th>0</th>\n",
|
1295 |
-
" <td>0.2</td>\n",
|
1296 |
-
" </tr>\n",
|
1297 |
-
" </tbody>\n",
|
1298 |
-
"</table>\n",
|
1299 |
-
"</div>"
|
1300 |
-
],
|
1301 |
-
"text/plain": [
|
1302 |
-
" bank\n",
|
1303 |
-
"0 0.2"
|
1304 |
-
]
|
1305 |
-
},
|
1306 |
-
"execution_count": 48,
|
1307 |
-
"metadata": {},
|
1308 |
-
"output_type": "execute_result"
|
1309 |
-
}
|
1310 |
-
],
|
1311 |
-
"source": [
|
1312 |
-
"pd.DataFrame({\"bank\":[0.2]})"
|
1313 |
-
]
|
1314 |
-
},
|
1315 |
-
{
|
1316 |
-
"cell_type": "code",
|
1317 |
-
"execution_count": 60,
|
1318 |
-
"id": "b7c73606-d7f9-4f17-bf4d-17cfbb3aa664",
|
1319 |
-
"metadata": {},
|
1320 |
-
"outputs": [
|
1321 |
-
{
|
1322 |
-
"name": "stdout",
|
1323 |
-
"output_type": "stream",
|
1324 |
-
"text": [
|
1325 |
-
"['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli', 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte', 'wnli', 'ax']\n"
|
1326 |
-
]
|
1327 |
-
}
|
1328 |
-
],
|
1329 |
-
"source": [
|
1330 |
-
"from datasets import get_dataset_config_names\n",
|
1331 |
-
"\n",
|
1332 |
-
"configs = get_dataset_config_names(\"glue\")\n",
|
1333 |
-
"print(configs)"
|
1334 |
-
]
|
1335 |
-
},
|
1336 |
-
{
|
1337 |
-
"cell_type": "code",
|
1338 |
-
"execution_count": 50,
|
1339 |
-
"id": "92eea464-6b63-4613-ab4d-aa5003e0bb3b",
|
1340 |
-
"metadata": {},
|
1341 |
-
"outputs": [],
|
1342 |
-
"source": [
|
1343 |
-
"from datasets import get_dataset_config_names"
|
1344 |
-
]
|
1345 |
-
},
|
1346 |
-
{
|
1347 |
-
"cell_type": "code",
|
1348 |
-
"execution_count": 51,
|
1349 |
-
"id": "4f9c2924-001a-4b76-a8ed-a072b43eedbd",
|
1350 |
-
"metadata": {},
|
1351 |
-
"outputs": [],
|
1352 |
-
"source": [
|
1353 |
-
"tasks = get_dataset_config_names(\"ought/raft\")"
|
1354 |
-
]
|
1355 |
-
},
|
1356 |
-
{
|
1357 |
-
"cell_type": "code",
|
1358 |
-
"execution_count": 55,
|
1359 |
-
"id": "9b27374f-b118-440a-acab-6e4aa09f42a4",
|
1360 |
-
"metadata": {},
|
1361 |
-
"outputs": [],
|
1362 |
-
"source": [
|
1363 |
-
"submission_data = {t:[] for t in tasks}\n",
|
1364 |
-
"\n",
|
1365 |
-
"for task in data[\"card_data\"][\"results\"]:\n",
|
1366 |
-
" task_data = task[\"task\"]\n",
|
1367 |
-
" task_name = task_data[\"name\"]\n",
|
1368 |
-
" score = task_data[\"metrics\"][0][\"value\"]\n",
|
1369 |
-
" submission_data[task_name].append(score)"
|
1370 |
-
]
|
1371 |
-
},
|
1372 |
-
{
|
1373 |
-
"cell_type": "code",
|
1374 |
-
"execution_count": 56,
|
1375 |
-
"id": "6b7cf2e0-ee92-4647-8d9b-6edef48e06f8",
|
1376 |
-
"metadata": {},
|
1377 |
-
"outputs": [
|
1378 |
-
{
|
1379 |
-
"data": {
|
1380 |
-
"text/plain": [
|
1381 |
-
"{'banking_77': [0.009504218288713173],\n",
|
1382 |
-
" 'medical_subdomain_of_clinical_notes': [0.5912133593265538],\n",
|
1383 |
-
" 'overruling': [0.5523904885287522],\n",
|
1384 |
-
" 'gpai_initiatives': [0.5947694876413803],\n",
|
1385 |
-
" 'semiconductor_org_types': [0.33982211621333613],\n",
|
1386 |
-
" 'twitter_complaints': [0.7281156178656647],\n",
|
1387 |
-
" 'neurips_impact_statement_risks': [0.8783775228874845],\n",
|
1388 |
-
" 'systematic_review_inclusion': [0.2918416872180052],\n",
|
1389 |
-
" 'terms_of_service': [0.14477157391911066],\n",
|
1390 |
-
" 'tai_safety_research': [0.08962249895220364],\n",
|
1391 |
-
" 'one_stop_english': [0.2603661495335281]}"
|
1392 |
-
]
|
1393 |
-
},
|
1394 |
-
"execution_count": 56,
|
1395 |
-
"metadata": {},
|
1396 |
-
"output_type": "execute_result"
|
1397 |
-
}
|
1398 |
-
],
|
1399 |
-
"source": [
|
1400 |
-
"submission_data"
|
1401 |
-
]
|
1402 |
-
},
|
1403 |
-
{
|
1404 |
-
"cell_type": "code",
|
1405 |
-
"execution_count": 61,
|
1406 |
-
"id": "5df282e4-87c4-4ea7-833e-6a87886e2f76",
|
1407 |
-
"metadata": {},
|
1408 |
-
"outputs": [
|
1409 |
-
{
|
1410 |
-
"data": {
|
1411 |
-
"text/plain": [
|
1412 |
-
"{'benchmark': 'ought/raft',\n",
|
1413 |
-
" 'type': 'evaluation',\n",
|
1414 |
-
" 'submission_dataset': 'ought/raft-dummy-predictions',\n",
|
1415 |
-
" 'tags': ['autonlp', 'evaluation', 'benchmark'],\n",
|
1416 |
-
" 'model-index': None,\n",
|
1417 |
-
" 'results': [{'task': {'metrics': [{'name': 'f1',\n",
|
1418 |
-
" 'type': 'f1',\n",
|
1419 |
-
" 'value': 0.009504218288713173}],\n",
|
1420 |
-
" 'name': 'banking_77',\n",
|
1421 |
-
" 'type': 'text-classification'}},\n",
|
1422 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1423 |
-
" 'type': 'f1',\n",
|
1424 |
-
" 'value': 0.5912133593265538}],\n",
|
1425 |
-
" 'name': 'medical_subdomain_of_clinical_notes',\n",
|
1426 |
-
" 'type': 'text-classification'}},\n",
|
1427 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1428 |
-
" 'type': 'f1',\n",
|
1429 |
-
" 'value': 0.5523904885287522}],\n",
|
1430 |
-
" 'name': 'overruling',\n",
|
1431 |
-
" 'type': 'text-classification'}},\n",
|
1432 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1433 |
-
" 'type': 'f1',\n",
|
1434 |
-
" 'value': 0.5947694876413803}],\n",
|
1435 |
-
" 'name': 'gpai_initiatives',\n",
|
1436 |
-
" 'type': 'text-classification'}},\n",
|
1437 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1438 |
-
" 'type': 'f1',\n",
|
1439 |
-
" 'value': 0.33982211621333613}],\n",
|
1440 |
-
" 'name': 'semiconductor_org_types',\n",
|
1441 |
-
" 'type': 'text-classification'}},\n",
|
1442 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1443 |
-
" 'type': 'f1',\n",
|
1444 |
-
" 'value': 0.7281156178656647}],\n",
|
1445 |
-
" 'name': 'twitter_complaints',\n",
|
1446 |
-
" 'type': 'text-classification'}},\n",
|
1447 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1448 |
-
" 'type': 'f1',\n",
|
1449 |
-
" 'value': 0.8783775228874845}],\n",
|
1450 |
-
" 'name': 'neurips_impact_statement_risks',\n",
|
1451 |
-
" 'type': 'text-classification'}},\n",
|
1452 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1453 |
-
" 'type': 'f1',\n",
|
1454 |
-
" 'value': 0.2918416872180052}],\n",
|
1455 |
-
" 'name': 'systematic_review_inclusion',\n",
|
1456 |
-
" 'type': 'text-classification'}},\n",
|
1457 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1458 |
-
" 'type': 'f1',\n",
|
1459 |
-
" 'value': 0.14477157391911066}],\n",
|
1460 |
-
" 'name': 'terms_of_service',\n",
|
1461 |
-
" 'type': 'text-classification'}},\n",
|
1462 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1463 |
-
" 'type': 'f1',\n",
|
1464 |
-
" 'value': 0.08962249895220364}],\n",
|
1465 |
-
" 'name': 'tai_safety_research',\n",
|
1466 |
-
" 'type': 'text-classification'}},\n",
|
1467 |
-
" {'task': {'metrics': [{'name': 'f1',\n",
|
1468 |
-
" 'type': 'f1',\n",
|
1469 |
-
" 'value': 0.2603661495335281}],\n",
|
1470 |
-
" 'name': 'one_stop_english',\n",
|
1471 |
-
" 'type': 'text-classification'}}]}"
|
1472 |
-
]
|
1473 |
-
},
|
1474 |
-
"execution_count": 61,
|
1475 |
-
"metadata": {},
|
1476 |
-
"output_type": "execute_result"
|
1477 |
-
}
|
1478 |
-
],
|
1479 |
-
"source": [
|
1480 |
-
"data[\"card_data\"]"
|
1481 |
-
]
|
1482 |
-
},
|
1483 |
-
{
|
1484 |
-
"cell_type": "code",
|
1485 |
-
"execution_count": 2,
|
1486 |
-
"id": "b07a4fa9-176e-4ff3-bc3f-eb2a6fc9efda",
|
1487 |
-
"metadata": {},
|
1488 |
-
"outputs": [],
|
1489 |
-
"source": [
|
1490 |
-
"response = requests.get(\"http://huggingface.co/api/datasets\", headers=header)\n",
|
1491 |
-
"all_datasets = response.json()"
|
1492 |
-
]
|
1493 |
-
},
|
1494 |
-
{
|
1495 |
-
"cell_type": "code",
|
1496 |
-
"execution_count": 3,
|
1497 |
-
"id": "63dc07ec-2f28-483f-8163-c97e8a6a4005",
|
1498 |
-
"metadata": {},
|
1499 |
-
"outputs": [
|
1500 |
-
{
|
1501 |
-
"data": {
|
1502 |
-
"text/plain": [
|
1503 |
-
"2510"
|
1504 |
-
]
|
1505 |
-
},
|
1506 |
-
"execution_count": 3,
|
1507 |
-
"metadata": {},
|
1508 |
-
"output_type": "execute_result"
|
1509 |
-
}
|
1510 |
-
],
|
1511 |
-
"source": [
|
1512 |
-
"len(all_datasets)"
|
1513 |
-
]
|
1514 |
-
},
|
1515 |
-
{
|
1516 |
-
"cell_type": "code",
|
1517 |
-
"execution_count": 21,
|
1518 |
-
"id": "296f68c1-608d-4ea6-8d0e-cc35fb7d74c4",
|
1519 |
-
"metadata": {},
|
1520 |
-
"outputs": [
|
1521 |
-
{
|
1522 |
-
"data": {
|
1523 |
-
"text/plain": [
|
1524 |
-
"{'id': 'disfl_qa',\n",
|
1525 |
-
" 'tags': ['annotations_creators:expert-generated',\n",
|
1526 |
-
" 'language_creators:found',\n",
|
1527 |
-
" 'languages:en',\n",
|
1528 |
-
" 'licenses:cc-by-4.0',\n",
|
1529 |
-
" 'multilinguality:monolingual',\n",
|
1530 |
-
" 'pretty_name:DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering',\n",
|
1531 |
-
" 'size_categories:10K<n<100K',\n",
|
1532 |
-
" 'source_datasets:original',\n",
|
1533 |
-
" 'task_categories:question-answering',\n",
|
1534 |
-
" 'task_ids:extractive-qa',\n",
|
1535 |
-
" 'task_ids:open-domain-qa'],\n",
|
1536 |
-
" 'citation': '@inproceedings{gupta-etal-2021-disflqa,\\n title = \"{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}\",\\n author = \"Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal\",\\n booktitle = \"Findings of ACL\",\\n year = \"2021\"\\n}',\n",
|
1537 |
-
" 'description': 'Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting,\\nnamely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018)\\ndataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as\\na source of distractors.\\n\\nThe final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are\\ncorrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a\\nmajor gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for\\ntesting robustness of models against disfluent inputs.\\n\\nOur expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from\\nDisfl-QA. Detailed experiments and analyses can be found in our paper.',\n",
|
1538 |
-
" 'key': ''}"
|
1539 |
-
]
|
1540 |
-
},
|
1541 |
-
"execution_count": 21,
|
1542 |
-
"metadata": {},
|
1543 |
-
"output_type": "execute_result"
|
1544 |
-
}
|
1545 |
-
],
|
1546 |
-
"source": [
|
1547 |
-
"all_datasets[154]"
|
1548 |
-
]
|
1549 |
-
},
|
1550 |
-
{
|
1551 |
-
"cell_type": "code",
|
1552 |
-
"execution_count": 22,
|
1553 |
-
"id": "8c73c912-c903-48f9-9ccf-fdb70d0bd556",
|
1554 |
-
"metadata": {},
|
1555 |
-
"outputs": [],
|
1556 |
-
"source": [
|
1557 |
-
"def extract_tags(dataset):\n",
|
1558 |
-
" tags = {}\n",
|
1559 |
-
" for tag in dataset[\"tags\"]:\n",
|
1560 |
-
" k,v = tuple(tag.split(\":\", 1))\n",
|
1561 |
-
" tags[k] = v\n",
|
1562 |
-
" return tags"
|
1563 |
-
]
|
1564 |
-
},
|
1565 |
-
{
|
1566 |
-
"cell_type": "code",
|
1567 |
-
"execution_count": 24,
|
1568 |
-
"id": "d4aa1b62-1501-4f3d-8613-e2dfb5fef79d",
|
1569 |
-
"metadata": {},
|
1570 |
-
"outputs": [],
|
1571 |
-
"source": [
|
1572 |
-
"tags = extract_tags(all_datasets[0])"
|
1573 |
-
]
|
1574 |
-
},
|
1575 |
-
{
|
1576 |
-
"cell_type": "code",
|
1577 |
-
"execution_count": 27,
|
1578 |
-
"id": "b8c25fe5-d0d5-4ca9-afc6-8d5cf68f20fd",
|
1579 |
-
"metadata": {},
|
1580 |
-
"outputs": [
|
1581 |
-
{
|
1582 |
-
"data": {
|
1583 |
-
"text/plain": [
|
1584 |
-
"False"
|
1585 |
-
]
|
1586 |
-
},
|
1587 |
-
"execution_count": 27,
|
1588 |
-
"metadata": {},
|
1589 |
-
"output_type": "execute_result"
|
1590 |
-
}
|
1591 |
-
],
|
1592 |
-
"source": [
|
1593 |
-
"tags.get(\"benchmark\") == \"raft\""
|
1594 |
-
]
|
1595 |
-
},
|
1596 |
-
{
|
1597 |
-
"cell_type": "code",
|
1598 |
-
"execution_count": 23,
|
1599 |
-
"id": "441f0b74-68a4-4b82-862d-2fcc69331cc0",
|
1600 |
-
"metadata": {},
|
1601 |
-
"outputs": [],
|
1602 |
-
"source": [
|
1603 |
-
"for idx, dset in enumerate(all_datasets):\n",
|
1604 |
-
" try:\n",
|
1605 |
-
" extract_tags(dset)\n",
|
1606 |
-
" except:\n",
|
1607 |
-
" print(dset[\"id\"], idx)"
|
1608 |
-
]
|
1609 |
-
},
|
1610 |
-
{
|
1611 |
-
"cell_type": "code",
|
1612 |
-
"execution_count": 5,
|
1613 |
-
"id": "b43f6131-6509-455f-ac02-1efabd9cdd1c",
|
1614 |
-
"metadata": {},
|
1615 |
-
"outputs": [
|
1616 |
-
{
|
1617 |
-
"data": {
|
1618 |
-
"text/plain": [
|
1619 |
-
"{'annotations_creators': 'expert-generated',\n",
|
1620 |
-
" 'language_creators': 'found',\n",
|
1621 |
-
" 'languages': 'en',\n",
|
1622 |
-
" 'licenses': 'mit',\n",
|
1623 |
-
" 'multilinguality': 'monolingual',\n",
|
1624 |
-
" 'size_categories': '10K<n<100K',\n",
|
1625 |
-
" 'source_datasets': 'original',\n",
|
1626 |
-
" 'task_categories': 'structure-prediction',\n",
|
1627 |
-
" 'task_ids': 'structure-prediction-other-acronym-identification'}"
|
1628 |
-
]
|
1629 |
-
},
|
1630 |
-
"execution_count": 5,
|
1631 |
-
"metadata": {},
|
1632 |
-
"output_type": "execute_result"
|
1633 |
-
}
|
1634 |
-
],
|
1635 |
-
"source": [
|
1636 |
-
"{i[0]:i[1] for t.split(\":\") in all_datasets[0][\"tags\"]}"
|
1637 |
-
]
|
1638 |
-
},
|
1639 |
-
{
|
1640 |
-
"cell_type": "code",
|
1641 |
-
"execution_count": 11,
|
1642 |
-
"id": "63420516-9870-4ecf-80d8-d922994e4b17",
|
1643 |
-
"metadata": {},
|
1644 |
-
"outputs": [
|
1645 |
-
{
|
1646 |
-
"name": "stdout",
|
1647 |
-
"output_type": "stream",
|
1648 |
-
"text": [
|
1649 |
-
"('a',)\n",
|
1650 |
-
"('b',)\n"
|
1651 |
-
]
|
1652 |
-
}
|
1653 |
-
],
|
1654 |
-
"source": [
|
1655 |
-
"for i in zip(\"a:b\".split(\":\")):\n",
|
1656 |
-
" print(i)"
|
1657 |
-
]
|
1658 |
-
},
|
1659 |
-
{
|
1660 |
-
"cell_type": "code",
|
1661 |
-
"execution_count": 15,
|
1662 |
-
"id": "dc43998b-c93b-48c0-bee4-e80845950246",
|
1663 |
-
"metadata": {},
|
1664 |
-
"outputs": [
|
1665 |
-
{
|
1666 |
-
"ename": "ValueError",
|
1667 |
-
"evalue": "not enough values to unpack (expected 2, got 1)",
|
1668 |
-
"output_type": "error",
|
1669 |
-
"traceback": [
|
1670 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1671 |
-
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
1672 |
-
"\u001b[0;32m/var/folders/28/k4cy5q7s2hs92xq7_h89_vgm0000gn/T/ipykernel_19497/2621214275.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"a\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"b\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
1673 |
-
"\u001b[0;31mValueError\u001b[0m: not enough values to unpack (expected 2, got 1)"
|
1674 |
-
]
|
1675 |
-
}
|
1676 |
-
],
|
1677 |
-
"source": [
|
1678 |
-
"a, b = zip(*[\"a\", \"b\"])"
|
1679 |
-
]
|
1680 |
-
},
|
1681 |
-
{
|
1682 |
-
"cell_type": "code",
|
1683 |
-
"execution_count": 12,
|
1684 |
-
"id": "4990ce09-a53f-47dd-b662-3f498352b641",
|
1685 |
-
"metadata": {},
|
1686 |
-
"outputs": [
|
1687 |
-
{
|
1688 |
-
"name": "stdout",
|
1689 |
-
"output_type": "stream",
|
1690 |
-
"text": [
|
1691 |
-
"annotations_creators expert-generated\n",
|
1692 |
-
"language_creators found\n",
|
1693 |
-
"languages en\n",
|
1694 |
-
"licenses mit\n",
|
1695 |
-
"multilinguality monolingual\n",
|
1696 |
-
"size_categories 10K<n<100K\n",
|
1697 |
-
"source_datasets original\n",
|
1698 |
-
"task_categories structure-prediction\n",
|
1699 |
-
"task_ids structure-prediction-other-acronym-identification\n"
|
1700 |
-
]
|
1701 |
-
}
|
1702 |
-
],
|
1703 |
-
"source": [
|
1704 |
-
"for tag in all_datasets[0][\"tags\"]:\n",
|
1705 |
-
" k,v = tuple(tag.split(\":\"))\n",
|
1706 |
-
" print(k,v)"
|
1707 |
-
]
|
1708 |
-
},
|
1709 |
-
{
|
1710 |
-
"cell_type": "code",
|
1711 |
-
"execution_count": 138,
|
1712 |
-
"id": "cf6b59da-02ff-4522-892d-8fe0aa254d01",
|
1713 |
-
"metadata": {},
|
1714 |
-
"outputs": [
|
1715 |
-
{
|
1716 |
-
"name": "stdout",
|
1717 |
-
"output_type": "stream",
|
1718 |
-
"text": [
|
1719 |
-
"0 <s>\n",
|
1720 |
-
"1922 ¡\n",
|
1721 |
-
"11884 hola\n",
|
1722 |
-
"16 ,\n",
|
1723 |
-
"378 me\n",
|
1724 |
-
"13496 llamo\n",
|
1725 |
-
"466 le\n",
|
1726 |
-
"91 w\n",
|
1727 |
-
"350 is\n",
|
1728 |
-
"5 !\n",
|
1729 |
-
"2 </s>\n"
|
1730 |
-
]
|
1731 |
-
}
|
1732 |
-
],
|
1733 |
-
"source": [
|
1734 |
-
"from transformers import AutoTokenizer\n",
|
1735 |
-
"\n",
|
1736 |
-
"model_ckpt = \"bertin-project/bertin-roberta-base-spanish\"\n",
|
1737 |
-
"tokenizer = AutoTokenizer.from_pretrained(model_ckpt, use_fast=False)\n",
|
1738 |
-
"input_ids = tokenizer(\"¡hola, me llamo lewis!\").input_ids\n",
|
1739 |
-
"for token in input_ids:\n",
|
1740 |
-
" print(token, tokenizer.decode(token))"
|
1741 |
-
]
|
1742 |
-
},
|
1743 |
-
{
|
1744 |
-
"cell_type": "code",
|
1745 |
-
"execution_count": null,
|
1746 |
-
"id": "430400f2-2c04-48d7-bf8e-63528441d410",
|
1747 |
-
"metadata": {},
|
1748 |
-
"outputs": [],
|
1749 |
-
"source": [
|
1750 |
-
"# 1922 ¡\n",
|
1751 |
-
"# 11884 hola\n",
|
1752 |
-
"# 16 ,\n",
|
1753 |
-
"# 378 me\n",
|
1754 |
-
"# 13496 llamo\n",
|
1755 |
-
"# 466 le\n",
|
1756 |
-
"# 91 w\n",
|
1757 |
-
"# 350 is\n",
|
1758 |
-
"# 5 !"
|
1759 |
-
]
|
1760 |
-
},
|
1761 |
-
{
|
1762 |
-
"cell_type": "code",
|
1763 |
-
"execution_count": 130,
|
1764 |
-
"id": "2ecdd872-af9b-4258-8a5e-d867f3785520",
|
1765 |
-
"metadata": {},
|
1766 |
-
"outputs": [
|
1767 |
-
{
|
1768 |
-
"data": {
|
1769 |
-
"text/plain": [
|
1770 |
-
"0"
|
1771 |
-
]
|
1772 |
-
},
|
1773 |
-
"execution_count": 130,
|
1774 |
-
"metadata": {},
|
1775 |
-
"output_type": "execute_result"
|
1776 |
-
}
|
1777 |
-
],
|
1778 |
-
"source": [
|
1779 |
-
"tokenizer.vocab[\"<s>\"]"
|
1780 |
-
]
|
1781 |
-
},
|
1782 |
-
{
|
1783 |
-
"cell_type": "code",
|
1784 |
-
"execution_count": 131,
|
1785 |
-
"id": "16941c33-5e22-485f-9d24-ac8f8542c368",
|
1786 |
-
"metadata": {},
|
1787 |
-
"outputs": [
|
1788 |
-
{
|
1789 |
-
"data": {
|
1790 |
-
"text/plain": [
|
1791 |
-
"'<s>'"
|
1792 |
-
]
|
1793 |
-
},
|
1794 |
-
"execution_count": 131,
|
1795 |
-
"metadata": {},
|
1796 |
-
"output_type": "execute_result"
|
1797 |
-
}
|
1798 |
-
],
|
1799 |
-
"source": [
|
1800 |
-
"tokenizer.bos_token"
|
1801 |
-
]
|
1802 |
-
},
|
1803 |
-
{
|
1804 |
-
"cell_type": "code",
|
1805 |
-
"execution_count": null,
|
1806 |
-
"id": "71929465-5ad5-444d-8c77-22f586b1ba23",
|
1807 |
-
"metadata": {},
|
1808 |
-
"outputs": [],
|
1809 |
-
"source": []
|
1810 |
-
}
|
1811 |
-
],
|
1812 |
-
"metadata": {
|
1813 |
-
"kernelspec": {
|
1814 |
-
"display_name": "Python 3 (ipykernel)",
|
1815 |
-
"language": "python",
|
1816 |
-
"name": "python3"
|
1817 |
-
},
|
1818 |
-
"language_info": {
|
1819 |
-
"codemirror_mode": {
|
1820 |
-
"name": "ipython",
|
1821 |
-
"version": 3
|
1822 |
-
},
|
1823 |
-
"file_extension": ".py",
|
1824 |
-
"mimetype": "text/x-python",
|
1825 |
-
"name": "python",
|
1826 |
-
"nbconvert_exporter": "python",
|
1827 |
-
"pygments_lexer": "ipython3",
|
1828 |
-
"version": "3.8.10"
|
1829 |
-
}
|
1830 |
-
},
|
1831 |
-
"nbformat": 4,
|
1832 |
-
"nbformat_minor": 5
|
1833 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|