File size: 17,889 Bytes
bab012b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import streamlit as st
import anthropic
import requests
import base64
import json
import time
import os
from typing import Dict, List, Any
import fal_client
from dotenv import load_dotenv
from IPython.display import Image as IPImage, display

# Page config
st.set_page_config(
    page_title="Interactive Course Preview Generator",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for modern, minimalist design
st.markdown("""
    <style>
    .main {background-color: #f8f9fa;}
    .stButton>button {
        background-color: #4c6ef5;
        color: white;
        border-radius: 4px;
        border: none;
        padding: 0.5rem 1rem;
    }
    .content-box {
        background-color: white;
        padding: 1.5rem;
        border-radius: 8px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        margin: 1rem 0;
    }
    .section-title {
        color: #4c6ef5;
        font-size: 1.2rem;
        font-weight: bold;
        margin-bottom: 1rem;
    }
    </style>
    """, unsafe_allow_html=True)

st.markdown("""
    <style>
    .main {background-color: #f8f9fa;}
    .subtitle {
        color: #6c757d;
        font-size: 0.9rem;
        font-style: italic;
        margin-top: 0.5rem;
    }
    .preview-content {
        background-color: #f8f9fa;
        padding: 1rem;
        border-left: 3px solid #4c6ef5;
        margin: 1rem 0;
    }
    .script-content {
        background-color: #e9ecef;
        padding: 1rem;
        border-radius: 4px;
        margin: 1rem 0;
    }
    </style>
""", unsafe_allow_html=True)

# Templates for content generation
COURSE_TEMPLATE = """Create a concise course outline for:
Topic: {topic}
Level: {level}
Duration: {duration}

Include:
1. Brief course description (2-3 sentences)
2. 4-5 main sections
3. For each section:
   - Title
   - Brief description (1 sentence)
   - 2-3 key concepts

Format it clearly and professionally."""

PREVIEW_TEMPLATE = """Create content for two brief preview slides about the concept: {concept}
For each slide include EXACTLY in this order:
1. Slide Title
2. Content (3 brief bullet points maximum)
3. Teacher Script (2-3 sentences maximum)
4. Image Description (one sentence describing a minimalist visual)

Format each slide clearly with these exact headers:
"Slide 1:", "Content:", "Teacher Script:", "Image Description:"
"Slide 2:", "Content:", "Teacher Script:", "Image Description:"
"""

INSTRUCTOR_INTRO_TEMPLATE = """Create a very brief welcome message (2 sentences maximum) for:
Instructor: {name}
Course: {topic}
Style: {style}

Keep it natural and concise."""

# API Integration Functions
def generate_image(description: str) -> str:
    """Generate image using verified Fal.ai implementation with proper waiting"""
    try:
        with st.spinner(f"Generating image for: {description}"):
            handler = fal_client.submit(
                "fal-ai/flux-pro/v1.1-ultra",
                arguments={
                    "prompt": f"Professional minimalist educational visual: {description}",
                    "num_images": 1
                }
            )
            
            # Extended wait time with status check
            for _ in range(30):  # Maximum 30 seconds wait
                time.sleep(1)
                result = fal_client.result("fal-ai/flux-pro/v1.1-ultra", handler.request_id)
                if result and "images" in result and result["images"]:
                    return result["images"][0]["url"]
            return None
    except Exception as e:
        st.error(f"Image generation error: {e}")
        return None

def generate_and_get_image(prompt: str) -> str:
    """Generate and get image using verified Fal.ai implementation"""
    try:
        with st.spinner(f"Generating image..."):
            # Submit request
            handler = fal_client.submit(
                "fal-ai/flux-pro/v1.1-ultra",
                arguments={"prompt": prompt, "num_images": 1}
            )
            request_id = handler.request_id
            
            if request_id:
                time.sleep(10)  # Wait for generation
                # Get result
                result = fal_client.result("fal-ai/flux-pro/v1.1-ultra", request_id)
                if result and "images" in result and result["images"]:
                    return result["images"][0]["url"]
    except Exception as e:
        st.error(f"Image generation error: {e}")
    return None
    
def create_voice_preview(text: str, voice_description: str) -> bytes:
    """Create voice preview using verified ElevenLabs implementation"""
    url = "https://api.elevenlabs.io/v1/text-to-voice/create-previews"
    headers = {
        'xi-api-key': st.secrets["ELEVENLABS_API_KEY"],
        'Content-Type': 'application/json'
    }
    payload = {
        'voice_description': voice_description,
        'text': text
    }
    
    try:
        response = requests.post(url, headers=headers, json=payload)
        if response.status_code == 200:
            return base64.b64decode(response.json()['previews'][0]['audio_base_64'])
        return None
    except Exception as e:
        st.error(f"Voice generation error: {e}")
        return None

def generate_content(topic: str, level: str, duration: str, 
                    instructor_name: str, teaching_style: str) -> Dict:
    """Generate course content using Claude 3.5"""
    client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
    
    try:
        # Generate course outline
        outline_response = client.messages.create(
            model="claude-3-5-sonnet-latest",
            max_tokens=4096,
            messages=[
                {
                    "role": "user",
                    "content": COURSE_TEMPLATE.format(
                        topic=topic,
                        level=level,
                        duration=duration
                    )
                }
            ]
        )
        
        course_content = outline_response.content[0].text
        
        # Parse content to get a concept for preview
        sections = parse_course_content(course_content)
        preview_concept = sections[0]['concepts'][0] if sections and sections[0].get('concepts') else topic
        
        # Generate preview content
        preview_response = client.messages.create(
            model="claude-3-5-sonnet-latest",
            max_tokens=4096,
            messages=[
                {
                    "role": "user",
                    "content": PREVIEW_TEMPLATE.format(concept=preview_concept)
                }
            ]
        )
        
        # Generate instructor introduction
        intro_response = client.messages.create(
            model="claude-3-5-sonnet-latest",
            max_tokens=4096,
            messages=[
                {
                    "role": "user",
                    "content": INSTRUCTOR_INTRO_TEMPLATE.format(
                        name=instructor_name,
                        style=teaching_style,
                        topic=topic
                    )
                }
            ]
        )
        
        return {
            "status": "success",
            "course_outline": course_content,
            "preview_content": preview_response.content[0].text,
            "instructor_intro": intro_response.content[0].text,
            "sections": sections
        }
    except Exception as e:
        return {"status": "error", "message": str(e)}

def parse_outline(content: str) -> List[Dict]:
    """Parse course outline to get sections and concepts"""
    sections = []
    current_section = None
    
    for line in content.split('\n'):
        line = line.strip()
        if not line:
            continue
        
        if line.lower().startswith(('section', 'part', 'module')):
            if current_section:
                sections.append(current_section)
            current_section = {
                'title': line,
                'description': '',
                'concepts': []
            }
        elif current_section:
            if not current_section['description']:
                current_section['description'] = line
            elif line.startswith(('-', '•', '*')):
                current_section['concepts'].append(line.lstrip('-•* '))
    
    if current_section:
        sections.append(current_section)
    
    return sections
    
def parse_course_content(content: str) -> List[Dict]:
    """Parse course content into structured format"""
    sections = []
    current_section = None
    
    for line in content.split('\n'):
        line = line.strip()
        if not line:
            continue
        
        if line.lower().startswith(('section', 'part', 'module')):
            if current_section:
                sections.append(current_section)
            current_section = {
                'title': line,
                'description': '',
                'concepts': []
            }
        elif current_section:
            if not current_section['description']:
                current_section['description'] = line
            elif line.startswith(('-', '•', '*')):
                current_section['concepts'].append(line.lstrip('-•* '))
    
    if current_section:
        sections.append(current_section)
    
    return sections

def generate_course_outline(topic: str, level: str, duration: str) -> Dict:
    """Generate initial course outline and get first concept"""
    client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
    
    prompt = f"""Create a course outline for:
Topic: {topic}
Level: {level}
Duration: {duration}

Include:
1. Brief course description (2-3 sentences)
2. 4-5 main sections with:
   - Clear title
   - 2-3 key concepts per section
   - Brief description

Format clearly with sections and concepts."""

    try:
        response = client.messages.create(
            model="claude-3-5-sonnet-latest",
            max_tokens=4096,
            messages=[{"role": "user", "content": prompt}]
        )
        
        outline = response.content[0].text
        # Parse to get first concept
        sections = parse_outline(outline)
        first_concept = sections[0]['concepts'][0] if sections and sections[0].get('concepts') else topic
        
        return {
            "status": "success",
            "outline": outline,
            "sections": sections,
            "first_concept": first_concept
        }
    except Exception as e:
        return {"status": "error", "message": str(e)}

def generate_preview_content(topic: str, concept: str) -> str:
    """Generate preview content using Claude"""
    client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
    
    prompt = f"""Create TWO preview slides about {concept} for a course on {topic}.
    
For EACH slide, provide EXACTLY in this format:
SLIDE [number]:
- Title: [slide title]
- Content: [3 clear bullet points]
- Teaching Script: [2-3 sentences explaining the slide content]
- Visual Description: [clear description for image generation]

Keep all content clear and concise."""

    try:
        response = client.messages.create(
            model="claude-3-5-sonnet-latest",
            max_tokens=4096,
            messages=[{"role": "user", "content": prompt}]
        )
        return response.content[0].text
    except Exception as e:
        st.error(f"Content generation error: {e}")
        return None

def parse_preview_content(content: str) -> List[Dict]:
    """Parse preview content into structured format"""
    slides = []
    current_slide = None
    
    for line in content.split('\n'):
        line = line.strip()
        if not line:
            continue
            
        if line.startswith('SLIDE'):
            if current_slide:
                slides.append(current_slide)
            current_slide = {
                'title': '',
                'content': [],
                'script': '',
                'visual': ''
            }
        elif current_slide:
            if line.startswith('- Title:'):
                current_slide['title'] = line.replace('- Title:', '').strip()
            elif line.startswith('- Content:'):
                # Next lines will be content until next section
                continue
            elif line.startswith('- Teaching Script:'):
                current_slide['script'] = line.replace('- Teaching Script:', '').strip()
            elif line.startswith('- Visual Description:'):
                current_slide['visual'] = line.replace('- Visual Description:', '').strip()
            elif line.startswith('-') or line.startswith('•'):
                current_slide['content'].append(line.lstrip('-• ').strip())
    
    if current_slide:
        slides.append(current_slide)
    
    return slides

def display_preview_content(preview_slides: List[Dict]):
    """Display preview content with proper styling"""
    for i, slide in enumerate(preview_slides, 1):
        st.markdown(f"### Preview Slide {i}")
        
        # Content section
        st.markdown('<div class="preview-content">', unsafe_allow_html=True)
        for point in slide['content']:
            st.markdown(f"• {point}")
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Script section
        st.markdown('<div class="script-content">', unsafe_allow_html=True)
        st.markdown("**Teaching Script:**")
        st.markdown(slide['script'])
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Generate and display image
        if slide['image_description']:
            image_url = generate_image(slide['image_description'])
            if image_url:
                st.image(image_url, use_column_width=True)


    


def display_preview_slides(slides: List[Dict]):
    """Display preview slides with proper styling"""
    for i, slide in enumerate(slides, 1):
        st.markdown(f"### {slide['title']}")
        
        col1, col2 = st.columns([2, 1])
        
        with col1:
            # Content
            st.markdown('<div class="preview-content">', unsafe_allow_html=True)
            for point in slide['content']:
                st.markdown(f"• {point}")
            st.markdown('</div>', unsafe_allow_html=True)
            
            # Teaching Script
            st.markdown('<div class="script-content">', unsafe_allow_html=True)
            st.markdown("**Teaching Script:**")
            st.markdown(slide['script'])
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col2:
            # Generate and display image
            if slide['visual']:
                image_url = generate_and_get_image(slide['visual'])
                if image_url:
                    st.image(image_url, use_column_width=True)

def main():
    st.title("Interactive Course Preview Generator")
    st.markdown("Generate professional course previews with content, visuals, and voice narration")

    # Input Section
    with st.container():
        st.markdown('<div class="section-title">Course Configuration</div>', unsafe_allow_html=True)
        
        col1, col2 = st.columns(2)
        with col1:
            topic = st.text_input("Course Topic", 
                placeholder="e.g., Machine Learning Fundamentals")
            level = st.selectbox("Course Level", 
                ["Beginner", "Intermediate", "Advanced"])
            duration = st.selectbox("Course Duration",
                ["2 Hours", "4 Hours", "8 Hours", "Full Day"])

        with col2:
            instructor_name = st.text_input("Instructor Name",
                placeholder="e.g., Dr. Sarah Johnson")
            teaching_style = st.selectbox("Teaching Style",
                ["Interactive", "Lecture-Based", "Project-Based", "Discussion-Led"])
            instructor_gender = st.selectbox("Instructor Voice",
                ["Male", "Female"])

    if st.button("Generate Preview", type="primary"):
        with st.spinner("Creating your course preview..."):
            try:
                # Step 1: Generate course outline and get first concept
                outline_result = generate_course_outline(topic, level, duration)
                if outline_result["status"] != "success":
                    st.error(f"Error generating outline: {outline_result.get('message')}")
                    return
                
                # Step 2: Generate instructor introduction
                intro_audio = create_voice_preview(
                    f"Hello! I'm {instructor_name}, and I'll be your instructor for {topic}. Let's explore this exciting subject together!",
                    f"Professional {instructor_gender.lower()} instructor, {teaching_style.lower()} style"
                )
                
                # Step 3: Generate preview content using first concept
                preview_content = generate_preview_content(topic, outline_result["first_concept"])
                if not preview_content:
                    st.error("Failed to generate preview content")
                    return
                
                # Step 4: Parse and display content
                slides = parse_preview_content(preview_content)
                
                # Display results
                
                # Course Outline
                st.markdown("## Course Overview")
                st.markdown(outline_result["outline"])
                
                # Instructor Introduction
                st.markdown("## Instructor Introduction")
                if intro_audio:
                    st.audio(intro_audio)
                
                # Preview Slides
                st.markdown("## Preview Slides")
                display_preview_slides(slides)
                
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
                return

if __name__ == "__main__":
    main()