Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from typing import Dict, List, Any
|
7 |
+
import time
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
# Page configuration
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Market Research & Analysis Platform",
|
13 |
+
layout="wide",
|
14 |
+
initial_sidebar_state="expanded"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Custom styling (updated for dark mode)
|
18 |
+
st.markdown("""
|
19 |
+
<style>
|
20 |
+
.main {
|
21 |
+
background-color: #121212;
|
22 |
+
color: #ffffff;
|
23 |
+
}
|
24 |
+
.insight-card {
|
25 |
+
background-color: #1e1e1e;
|
26 |
+
padding: 1.5rem;
|
27 |
+
border-radius: 8px;
|
28 |
+
box-shadow: 0 2px 4px rgba(255,255,255,0.1);
|
29 |
+
margin: 1rem 0;
|
30 |
+
}
|
31 |
+
.metric-card {
|
32 |
+
background-color: #1e1e1e;
|
33 |
+
padding: 1rem;
|
34 |
+
border-radius: 4px;
|
35 |
+
margin: 0.5rem 0;
|
36 |
+
}
|
37 |
+
.source-card {
|
38 |
+
background-color: #2e2e2e;
|
39 |
+
padding: 0.5rem;
|
40 |
+
border-radius: 4px;
|
41 |
+
font-size: 0.9rem;
|
42 |
+
margin-top: 0.5rem;
|
43 |
+
color: #ffffff;
|
44 |
+
}
|
45 |
+
.highlight-text {
|
46 |
+
color: #4c6ef5;
|
47 |
+
font-weight: bold;
|
48 |
+
}
|
49 |
+
</style>
|
50 |
+
""", unsafe_allow_html=True)
|
51 |
+
|
52 |
+
def query_perplexity(query: str, context: Dict) -> Dict:
|
53 |
+
url = "https://api.perplexity.ai/chat/completions"
|
54 |
+
headers = {
|
55 |
+
"Authorization": f"Bearer {st.secrets['PERPLEXITY_API_KEY']}",
|
56 |
+
"Content-Type": "application/json"
|
57 |
+
}
|
58 |
+
payload = {
|
59 |
+
"model": "llama-3.1-sonar-small-128k-online",
|
60 |
+
"messages": [
|
61 |
+
{"role": "system", "content": get_system_prompt(context)},
|
62 |
+
{"role": "user", "content": query}
|
63 |
+
],
|
64 |
+
"temperature": 0.2,
|
65 |
+
"max_tokens": 4096,
|
66 |
+
"top_p": 0.9,
|
67 |
+
"search_domain_filter": ["perplexity.ai"],
|
68 |
+
"return_images": False,
|
69 |
+
"return_related_questions": False,
|
70 |
+
"search_recency_filter": context.get('timeframe', 'month')
|
71 |
+
}
|
72 |
+
try:
|
73 |
+
response = requests.post(url, headers=headers, json=payload)
|
74 |
+
if response.status_code == 200:
|
75 |
+
return {
|
76 |
+
"status": "success",
|
77 |
+
"data": response.json(),
|
78 |
+
"citations": response.json().get("citations", [])
|
79 |
+
}
|
80 |
+
else:
|
81 |
+
return {"status": "error", "message": f"API Error: {response.status_code}"}
|
82 |
+
except Exception as e:
|
83 |
+
return {"status": "error", "message": str(e)}
|
84 |
+
|
85 |
+
def get_system_prompt(context: Dict) -> str:
|
86 |
+
# Adjust the prompt if Executive style and Comprehensive depth are selected.
|
87 |
+
if context.get("style", "").lower() == "executive" and context.get("depth", "").lower() == "comprehensive":
|
88 |
+
return f"""You are an expert market research analyst focusing on {context['focus_area']}.
|
89 |
+
Provide a high-level executive summary with key insights and concrete metrics.
|
90 |
+
Analysis style: Executive
|
91 |
+
Depth: Comprehensive
|
92 |
+
Timeline: Past {context['timeframe']}
|
93 |
+
|
94 |
+
Format your response with clear sections:
|
95 |
+
1. Executive Summary
|
96 |
+
2. Key Metrics
|
97 |
+
3. Market Position
|
98 |
+
4. Growth Analysis
|
99 |
+
5. Strategic Recommendations
|
100 |
+
|
101 |
+
Include specific numbers, percentages, and actionable insights."""
|
102 |
+
else:
|
103 |
+
return f"""You are an expert market research analyst focusing on {context['focus_area']}.
|
104 |
+
Provide detailed analysis with concrete metrics and specific insights.
|
105 |
+
Analysis style: {context['style']}
|
106 |
+
Depth: {context['depth']}
|
107 |
+
Timeline: Past {context['timeframe']}
|
108 |
+
|
109 |
+
Format your response with clear sections:
|
110 |
+
1. Key Metrics
|
111 |
+
2. Market Position
|
112 |
+
3. Growth Analysis
|
113 |
+
4. Competitive Insights
|
114 |
+
5. Strategic Recommendations
|
115 |
+
|
116 |
+
Include specific numbers, percentages, and actionable insights."""
|
117 |
+
|
118 |
+
def parse_perplexity_response(response: Dict) -> Dict:
|
119 |
+
try:
|
120 |
+
content = response['data']['choices'][0]['message']['content']
|
121 |
+
citations = response.get('citations', [])
|
122 |
+
sections = {
|
123 |
+
'key_metrics': [],
|
124 |
+
'market_position': [],
|
125 |
+
'growth_analysis': [],
|
126 |
+
'competitive_insights': [],
|
127 |
+
'recommendations': []
|
128 |
+
}
|
129 |
+
current_section = None
|
130 |
+
for line in content.split('\n'):
|
131 |
+
line = line.strip()
|
132 |
+
if not line:
|
133 |
+
continue
|
134 |
+
lower_line = line.lower()
|
135 |
+
if 'key metric' in lower_line:
|
136 |
+
current_section = 'key_metrics'
|
137 |
+
elif 'market position' in lower_line:
|
138 |
+
current_section = 'market_position'
|
139 |
+
elif 'growth' in lower_line:
|
140 |
+
current_section = 'growth_analysis'
|
141 |
+
elif 'competiti' in lower_line:
|
142 |
+
current_section = 'competitive_insights'
|
143 |
+
elif 'recommend' in lower_line:
|
144 |
+
current_section = 'recommendations'
|
145 |
+
elif current_section and line.startswith(('-', 'β’', '*')):
|
146 |
+
sections[current_section].append(line.lstrip('-β’* '))
|
147 |
+
return {"status": "success", "sections": sections, "citations": citations}
|
148 |
+
except Exception as e:
|
149 |
+
return {"status": "error", "message": str(e)}
|
150 |
+
|
151 |
+
def extract_metrics(content: Dict) -> Dict:
|
152 |
+
metrics = {
|
153 |
+
'market_share': [],
|
154 |
+
'growth_rate': [],
|
155 |
+
'competitive_position': [],
|
156 |
+
'innovation_score': []
|
157 |
+
}
|
158 |
+
try:
|
159 |
+
for section in content['sections'].values():
|
160 |
+
for line in section:
|
161 |
+
if '%' in line or any(char.isdigit() for char in line):
|
162 |
+
if 'market share' in line.lower():
|
163 |
+
metrics['market_share'].append(extract_number(line))
|
164 |
+
elif 'growth' in line.lower():
|
165 |
+
metrics['growth_rate'].append(extract_number(line))
|
166 |
+
elif 'position' in line.lower():
|
167 |
+
metrics['competitive_position'].append(extract_number(line))
|
168 |
+
elif 'innovation' in line.lower():
|
169 |
+
metrics['innovation_score'].append(extract_number(line))
|
170 |
+
return metrics
|
171 |
+
except Exception as e:
|
172 |
+
st.error(f"Error extracting metrics: {str(e)}")
|
173 |
+
return metrics
|
174 |
+
|
175 |
+
def extract_number(text: str) -> float:
|
176 |
+
import re
|
177 |
+
numbers = re.findall(r'[-+]?\d*\.?\d+%?', text)
|
178 |
+
if numbers:
|
179 |
+
number = numbers[0]
|
180 |
+
return float(number.replace('%', '')) if '%' in number else float(number)
|
181 |
+
return 0.0
|
182 |
+
|
183 |
+
def create_visualizations(metrics: Dict, context: Dict) -> Dict:
|
184 |
+
charts = {}
|
185 |
+
if metrics['market_share'] and metrics['competitive_position']:
|
186 |
+
fig = go.Figure()
|
187 |
+
categories = ['Market Share', 'Growth Rate', 'Competitive Position', 'Innovation Score']
|
188 |
+
values = [
|
189 |
+
metrics['market_share'][0] if metrics['market_share'] else 0,
|
190 |
+
metrics['growth_rate'][0] if metrics['growth_rate'] else 0,
|
191 |
+
metrics['competitive_position'][0] if metrics['competitive_position'] else 0,
|
192 |
+
metrics['innovation_score'][0] if metrics['innovation_score'] else 0
|
193 |
+
]
|
194 |
+
fig.add_trace(go.Scatterpolar(
|
195 |
+
r=values,
|
196 |
+
theta=categories,
|
197 |
+
fill='toself',
|
198 |
+
name=context['company_name']
|
199 |
+
))
|
200 |
+
fig.update_layout(
|
201 |
+
polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
|
202 |
+
showlegend=False,
|
203 |
+
title=f"Market Position Analysis - {context['company_name']}"
|
204 |
+
)
|
205 |
+
charts['market_position'] = fig
|
206 |
+
if metrics['growth_rate']:
|
207 |
+
fig = go.Figure()
|
208 |
+
fig.add_trace(go.Scatter(
|
209 |
+
y=metrics['growth_rate'],
|
210 |
+
mode='lines+markers',
|
211 |
+
name='Growth Rate'
|
212 |
+
))
|
213 |
+
fig.update_layout(
|
214 |
+
title=f"Growth Trend Analysis - {context['company_name']}",
|
215 |
+
yaxis_title='Growth Rate (%)',
|
216 |
+
showlegend=True
|
217 |
+
)
|
218 |
+
charts['growth_trend'] = fig
|
219 |
+
return charts
|
220 |
+
|
221 |
+
def format_insights(content: Dict) -> str:
|
222 |
+
"""Format detailed analysis with sub-titles for each section"""
|
223 |
+
formatted = ""
|
224 |
+
section_titles = {
|
225 |
+
'key_metrics': 'π Key Metrics',
|
226 |
+
'market_position': 'π― Market Position',
|
227 |
+
'growth_analysis': 'π Growth Analysis',
|
228 |
+
'competitive_insights': 'π Competitive Insights',
|
229 |
+
'recommendations': 'π‘ Strategic Recommendations'
|
230 |
+
}
|
231 |
+
for section, title in section_titles.items():
|
232 |
+
if content['sections'].get(section):
|
233 |
+
formatted += f"\n### {title}\n\n"
|
234 |
+
for idx, point in enumerate(content['sections'][section], start=1):
|
235 |
+
formatted += f"- **{idx}.** {point}\n"
|
236 |
+
return formatted
|
237 |
+
|
238 |
+
def main():
|
239 |
+
st.title("Market Research & Analysis Platform")
|
240 |
+
st.markdown("Real-time market insights with data-driven analysis")
|
241 |
+
|
242 |
+
with st.sidebar:
|
243 |
+
st.header("Analysis Parameters")
|
244 |
+
company_name = st.text_input("Company/Product Name", placeholder="e.g., Tesla, OpenAI, Snowflake")
|
245 |
+
industry = st.selectbox("Industry", ["Technology", "AI/ML", "SaaS", "Fintech", "E-commerce", "Healthcare", "Energy", "Other"])
|
246 |
+
st.markdown("### Analysis Configuration")
|
247 |
+
focus_area = st.multiselect("Focus Areas", ["Market Position", "Growth Trajectory", "Technology Stack", "Competitive Analysis", "Innovation Trends", "Investment Outlook"], default=["Market Position", "Growth Trajectory"])
|
248 |
+
timeframe = st.select_slider("Analysis Timeframe", options=["week", "month", "quarter", "year"], value="month")
|
249 |
+
depth = st.select_slider("Analysis Depth", options=["Brief", "Detailed", "Comprehensive"], value="Detailed")
|
250 |
+
style = st.selectbox("Report Style", ["Technical", "Business", "Executive"], index=1)
|
251 |
+
competitors = st.text_input("Key Competitors (optional)", placeholder="Comma-separated names")
|
252 |
+
|
253 |
+
if st.button("Generate Analysis", type="primary"):
|
254 |
+
if not company_name:
|
255 |
+
st.warning("Please enter a company name.")
|
256 |
+
return
|
257 |
+
|
258 |
+
analysis_context = {
|
259 |
+
"company_name": company_name,
|
260 |
+
"industry": industry,
|
261 |
+
"focus_area": ", ".join(focus_area),
|
262 |
+
"timeframe": timeframe,
|
263 |
+
"depth": depth,
|
264 |
+
"style": style,
|
265 |
+
"competitors": competitors
|
266 |
+
}
|
267 |
+
|
268 |
+
with st.spinner("Generating market analysis..."):
|
269 |
+
progress_bar = st.progress(0)
|
270 |
+
status_text = st.empty()
|
271 |
+
try:
|
272 |
+
status_text.text("Gathering market intelligence...")
|
273 |
+
progress_bar.progress(20)
|
274 |
+
research_response = query_perplexity(
|
275 |
+
f"Provide a detailed market analysis for {company_name} in the {industry} industry, focusing on {', '.join(focus_area)}",
|
276 |
+
analysis_context
|
277 |
+
)
|
278 |
+
if research_response["status"] != "success":
|
279 |
+
st.error("Failed to gather market intelligence.")
|
280 |
+
return
|
281 |
+
|
282 |
+
status_text.text("Processing insights...")
|
283 |
+
progress_bar.progress(40)
|
284 |
+
parsed_content = parse_perplexity_response(research_response)
|
285 |
+
if parsed_content["status"] != "success":
|
286 |
+
st.error("Failed to process insights.")
|
287 |
+
return
|
288 |
+
|
289 |
+
status_text.text("Generating visualizations...")
|
290 |
+
progress_bar.progress(60)
|
291 |
+
metrics = extract_metrics(parsed_content)
|
292 |
+
charts = create_visualizations(metrics, analysis_context)
|
293 |
+
|
294 |
+
status_text.text("Preparing analysis report...")
|
295 |
+
progress_bar.progress(80)
|
296 |
+
tabs = st.tabs(["Overview", "Detailed Analysis", "Visualizations"])
|
297 |
+
|
298 |
+
with tabs[0]:
|
299 |
+
st.markdown("## Executive Summary", unsafe_allow_html=True)
|
300 |
+
if metrics:
|
301 |
+
cols = st.columns(len(metrics))
|
302 |
+
for col, (metric, values) in zip(cols, metrics.items()):
|
303 |
+
if values:
|
304 |
+
col.metric(metric.replace('_', ' ').title(), f"{values[0]:.1f}%")
|
305 |
+
if parsed_content["citations"]:
|
306 |
+
st.markdown("### Sources")
|
307 |
+
for citation in parsed_content["citations"]:
|
308 |
+
st.markdown(f'<div class="source-card">{citation}</div>', unsafe_allow_html=True)
|
309 |
+
|
310 |
+
with tabs[1]:
|
311 |
+
st.markdown(format_insights(parsed_content), unsafe_allow_html=True)
|
312 |
+
|
313 |
+
with tabs[2]:
|
314 |
+
for chart_name, fig in charts.items():
|
315 |
+
st.plotly_chart(fig, use_container_width=True)
|
316 |
+
|
317 |
+
progress_bar.progress(100)
|
318 |
+
status_text.text("Analysis complete!")
|
319 |
+
|
320 |
+
st.download_button(
|
321 |
+
"Download Analysis",
|
322 |
+
data=json.dumps({
|
323 |
+
"context": analysis_context,
|
324 |
+
"insights": parsed_content["sections"],
|
325 |
+
"metrics": metrics,
|
326 |
+
"citations": parsed_content["citations"]
|
327 |
+
}, indent=2),
|
328 |
+
file_name=f"market_analysis_{company_name}.json",
|
329 |
+
mime="application/json"
|
330 |
+
)
|
331 |
+
except Exception as e:
|
332 |
+
st.error(f"An error occurred: {str(e)}")
|
333 |
+
return
|
334 |
+
|
335 |
+
if __name__ == "__main__":
|
336 |
+
main()
|