Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import io
|
4 |
import random
|
5 |
-
import
|
6 |
-
import
|
7 |
-
from
|
8 |
-
from
|
9 |
-
import
|
10 |
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
article_text = """
|
17 |
<div style="text-align: center;">
|
@@ -27,57 +35,104 @@ article_text = """
|
|
27 |
</div>
|
28 |
"""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
lora_id = "black-forest-labs/FLUX.1-dev"
|
36 |
-
|
37 |
-
key = random.randint(0, 999)
|
38 |
|
39 |
-
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
|
83 |
examples = [
|
@@ -114,13 +169,20 @@ with gr.Blocks(css=css) as app:
|
|
114 |
with gr.Row():
|
115 |
with gr.Accordion("Advanced Settings", open=False):
|
116 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
|
118 |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
|
119 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
120 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
121 |
with gr.Row():
|
122 |
-
steps = gr.Slider(label="
|
123 |
-
cfg = gr.Slider(label="
|
124 |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
125 |
|
126 |
with gr.Row():
|
@@ -140,6 +202,7 @@ with gr.Blocks(css=css) as app:
|
|
140 |
)
|
141 |
|
142 |
|
143 |
-
text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
|
|
144 |
|
145 |
-
app.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
|
|
3 |
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
|
11 |
+
dtype = torch.bfloat16
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
15 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
16 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
17 |
+
torch.cuda.empty_cache()
|
18 |
+
|
19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
MAX_IMAGE_SIZE = 2048
|
21 |
+
|
22 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
23 |
|
24 |
article_text = """
|
25 |
<div style="text-align: center;">
|
|
|
35 |
</div>
|
36 |
"""
|
37 |
|
38 |
+
@spaces.GPU()
|
39 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
40 |
+
if randomize_seed:
|
41 |
+
seed = random.randint(0, MAX_SEED)
|
42 |
+
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
43 |
|
|
|
44 |
|
45 |
+
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
46 |
+
# prompt=prompt,
|
47 |
+
# guidance_scale=guidance_scale,
|
48 |
+
# num_inference_steps=num_inference_steps,
|
49 |
+
# width=width,
|
50 |
+
# height=height,
|
51 |
+
# generator=generator,
|
52 |
+
# output_type="pil",
|
53 |
+
# good_vae=good_vae,
|
54 |
+
# ):
|
55 |
+
# yield img, seed
|
56 |
+
|
57 |
+
# Handle LoRA loading
|
58 |
+
# Load LoRA weights and prepare joint_attention_kwargs
|
59 |
+
if lora_id:
|
60 |
+
pipe.unload_lora_weights()
|
61 |
+
pipe.load_lora_weights(lora_id)
|
62 |
+
joint_attention_kwargs = {"scale": lora_scale}
|
63 |
+
else:
|
64 |
+
joint_attention_kwargs = None
|
65 |
|
66 |
+
try:
|
67 |
+
# Call the custom pipeline function with the correct keyword argument
|
68 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
69 |
+
prompt=prompt,
|
70 |
+
guidance_scale=guidance_scale,
|
71 |
+
num_inference_steps=num_inference_steps,
|
72 |
+
width=width,
|
73 |
+
height=height,
|
74 |
+
generator=generator,
|
75 |
+
output_type="pil",
|
76 |
+
good_vae=good_vae, # Assuming good_vae is defined elsewhere
|
77 |
+
joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name
|
78 |
+
):
|
79 |
+
yield img, seed
|
80 |
+
finally:
|
81 |
+
# Unload LoRA weights if they were loaded
|
82 |
+
if lora_id:
|
83 |
+
pipe.unload_lora_weights()
|
84 |
+
|
85 |
+
# def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
|
86 |
+
# if prompt == "" or prompt == None:
|
87 |
+
# return None
|
88 |
+
|
89 |
+
# if lora_id.strip() == "" or lora_id == None:
|
90 |
+
# lora_id = "black-forest-labs/FLUX.1-dev"
|
91 |
+
|
92 |
+
# key = random.randint(0, 999)
|
93 |
+
|
94 |
+
# API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
95 |
+
|
96 |
+
# API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
97 |
+
# headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
98 |
+
|
99 |
+
# # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
100 |
+
# # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
101 |
|
102 |
+
# prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
103 |
+
# # print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
104 |
|
105 |
+
# # If seed is -1, generate a random seed and use it
|
106 |
+
# if randomize_seed:
|
107 |
+
# seed = random.randint(1, 4294967296)
|
108 |
|
109 |
+
# payload = {
|
110 |
+
# "inputs": prompt,
|
111 |
+
# "steps": steps,
|
112 |
+
# "cfg_scale": cfg_scale,
|
113 |
+
# "seed": seed,
|
114 |
+
# "parameters": {
|
115 |
+
# "width": width, # Pass the width to the API
|
116 |
+
# "height": height # Pass the height to the API
|
117 |
+
# }
|
118 |
+
# }
|
119 |
+
|
120 |
+
# response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
121 |
+
# if response.status_code != 200:
|
122 |
+
# print(f"Error: Failed to get image. Response status: {response.status_code}")
|
123 |
+
# print(f"Response content: {response.text}")
|
124 |
+
# if response.status_code == 503:
|
125 |
+
# raise gr.Error(f"{response.status_code} : The model is being loaded")
|
126 |
+
# raise gr.Error(f"{response.status_code}")
|
127 |
|
128 |
+
# try:
|
129 |
+
# image_bytes = response.content
|
130 |
+
# image = Image.open(io.BytesIO(image_bytes))
|
131 |
+
# print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
132 |
+
# return image, seed, seed
|
133 |
+
# except Exception as e:
|
134 |
+
# print(f"Error when trying to open the image: {e}")
|
135 |
+
# return None
|
136 |
|
137 |
|
138 |
examples = [
|
|
|
169 |
with gr.Row():
|
170 |
with gr.Accordion("Advanced Settings", open=False):
|
171 |
with gr.Row():
|
172 |
+
lora_scale = gr.Slider(
|
173 |
+
label="LoRA Scale",
|
174 |
+
minimum=0,
|
175 |
+
maximum=2,
|
176 |
+
step=0.01,
|
177 |
+
value=0.95,
|
178 |
+
)
|
179 |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
|
180 |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
|
181 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
182 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
183 |
with gr.Row():
|
184 |
+
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
|
185 |
+
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
186 |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
187 |
|
188 |
with gr.Row():
|
|
|
202 |
)
|
203 |
|
204 |
|
205 |
+
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
206 |
+
text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
207 |
|
208 |
+
app.launch()
|