ovi054 commited on
Commit
1237ef3
·
verified ·
1 Parent(s): e9beed4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -97
app.py CHANGED
@@ -7,6 +7,7 @@ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, Autoe
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
 
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
@@ -20,6 +21,20 @@ MAX_IMAGE_SIZE = 2048
20
 
21
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  @spaces.GPU()
24
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
25
  if randomize_seed:
@@ -66,117 +81,129 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
66
  # Unload LoRA weights if they were loaded
67
  if lora_id:
68
  pipe.unload_lora_weights()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
 
 
 
 
 
 
 
 
 
 
70
  examples = [
71
  "a tiny astronaut hatching from an egg on the moon",
72
  "a cat holding a sign that says hello world",
73
  "an anime illustration of a wiener schnitzel",
74
  ]
75
 
76
- css="""
77
  #col-container {
78
  margin: 0 auto;
79
- max-width: 520px;
 
 
 
 
 
 
 
 
 
80
  }
81
  """
82
 
83
- with gr.Blocks(css=css) as demo:
84
-
85
  with gr.Column(elem_id="col-container"):
86
- gr.Markdown(f"""# FLUX.1 [dev] LoRA
87
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
88
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
89
- """)
90
-
91
  with gr.Row():
92
-
93
- prompt = gr.Text(
94
- label="Prompt",
95
- show_label=False,
96
- max_lines=1,
97
- placeholder="Enter your prompt",
98
- container=False,
99
- )
100
-
101
- run_button = gr.Button("Run", scale=0)
102
-
103
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
- with gr.Accordion("Advanced Settings", open=False):
106
-
107
- seed = gr.Slider(
108
- label="Seed",
109
- minimum=0,
110
- maximum=MAX_SEED,
111
- step=1,
112
- value=0,
113
  )
114
-
115
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
116
-
117
- with gr.Row():
118
-
119
- width = gr.Slider(
120
- label="Width",
121
- minimum=256,
122
- maximum=MAX_IMAGE_SIZE,
123
- step=8,
124
- value=1024,
125
- )
126
-
127
- height = gr.Slider(
128
- label="Height",
129
- minimum=256,
130
- maximum=MAX_IMAGE_SIZE,
131
- step=8,
132
- value=1024,
133
- )
134
-
135
- with gr.Row():
136
-
137
- guidance_scale = gr.Slider(
138
- label="Guidance Scale",
139
- minimum=1,
140
- maximum=15,
141
- step=0.1,
142
- value=3.5,
143
- )
144
-
145
- num_inference_steps = gr.Slider(
146
- label="Number of inference steps",
147
- minimum=1,
148
- maximum=50,
149
- step=1,
150
- value=28,
151
- )
152
-
153
- with gr.Row():
154
- lora_id = gr.Textbox(
155
- label="LoRA Model ID (HuggingFace path)",
156
- placeholder="username/lora-model",
157
- max_lines=1
158
- )
159
- lora_scale = gr.Slider(
160
- label="LoRA Scale",
161
- minimum=0,
162
- maximum=2,
163
- step=0.01,
164
- value=0.95,
165
- )
166
 
167
- gr.Examples(
168
- examples = examples,
169
- fn = infer,
170
- inputs = [prompt],
171
- outputs = [result, seed],
172
- cache_examples="lazy"
173
- )
174
-
175
- gr.on(
176
- triggers=[run_button.click, prompt.submit],
177
- fn = infer,
178
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,lora_id,lora_scale],
179
- outputs = [result, seed]
180
- )
181
-
182
- demo.launch()
 
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
10
+
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
 
21
 
22
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
23
 
24
+ article_text = """
25
+ <div style="text-align: center;">
26
+ <p>Enjoying the tool? Buy me a coffee and get exclusive prompt guides!</p>
27
+ <p><i>Instantly unlock helpful tips for creating better prompts!</i></p>
28
+ <div style="display: flex; justify-content: center;">
29
+ <a href="https://piczify.lemonsqueezy.com/buy/0f5206fa-68e8-42f6-9ca8-4f80c587c83e">
30
+ <img src="https://www.buymeacoffee.com/assets/img/custom_images/yellow_img.png"
31
+ alt="Buy Me a Coffee"
32
+ style="height: 40px; width: auto; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); border-radius: 10px;">
33
+ </a>
34
+ </div>
35
+ </div>
36
+ """
37
+
38
  @spaces.GPU()
39
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
40
  if randomize_seed:
 
81
  # Unload LoRA weights if they were loaded
82
  if lora_id:
83
  pipe.unload_lora_weights()
84
+
85
+ # def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
86
+ # if prompt == "" or prompt == None:
87
+ # return None
88
+
89
+ # if lora_id.strip() == "" or lora_id == None:
90
+ # lora_id = "black-forest-labs/FLUX.1-dev"
91
+
92
+ # key = random.randint(0, 999)
93
+
94
+ # API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
95
+
96
+ # API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
97
+ # headers = {"Authorization": f"Bearer {API_TOKEN}"}
98
+
99
+ # # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
100
+ # # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
101
+
102
+ # prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
103
+ # # print(f'\033[1mGeneration {key}:\033[0m {prompt}')
104
+
105
+ # # If seed is -1, generate a random seed and use it
106
+ # if randomize_seed:
107
+ # seed = random.randint(1, 4294967296)
108
+
109
+ # payload = {
110
+ # "inputs": prompt,
111
+ # "steps": steps,
112
+ # "cfg_scale": cfg_scale,
113
+ # "seed": seed,
114
+ # "parameters": {
115
+ # "width": width, # Pass the width to the API
116
+ # "height": height # Pass the height to the API
117
+ # }
118
+ # }
119
+
120
+ # response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
121
+ # if response.status_code != 200:
122
+ # print(f"Error: Failed to get image. Response status: {response.status_code}")
123
+ # print(f"Response content: {response.text}")
124
+ # if response.status_code == 503:
125
+ # raise gr.Error(f"{response.status_code} : The model is being loaded")
126
+ # raise gr.Error(f"{response.status_code}")
127
 
128
+ # try:
129
+ # image_bytes = response.content
130
+ # image = Image.open(io.BytesIO(image_bytes))
131
+ # print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
132
+ # return image, seed, seed
133
+ # except Exception as e:
134
+ # print(f"Error when trying to open the image: {e}")
135
+ # return None
136
+
137
+
138
  examples = [
139
  "a tiny astronaut hatching from an egg on the moon",
140
  "a cat holding a sign that says hello world",
141
  "an anime illustration of a wiener schnitzel",
142
  ]
143
 
144
+ css = """
145
  #col-container {
146
  margin: 0 auto;
147
+ max-width: 960px;
148
+ }
149
+ .generate-btn {
150
+ background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
151
+ border: none !important;
152
+ color: white !important;
153
+ }
154
+ .generate-btn:hover {
155
+ transform: translateY(-2px);
156
+ box-shadow: 0 5px 15px rgba(0,0,0,0.2);
157
  }
158
  """
159
 
160
+ with gr.Blocks(css=css) as app:
161
+ gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
162
  with gr.Column(elem_id="col-container"):
 
 
 
 
 
163
  with gr.Row():
164
+ with gr.Column():
165
+ with gr.Row():
166
+ text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
167
+ with gr.Row():
168
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
169
+ with gr.Row():
170
+ with gr.Accordion("Advanced Settings", open=False):
171
+ with gr.Row():
172
+ lora_scale = gr.Slider(
173
+ label="LoRA Scale",
174
+ minimum=0,
175
+ maximum=2,
176
+ step=0.01,
177
+ value=0.95,
178
+ )
179
+ width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
180
+ height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
181
+ seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
182
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
183
+ with gr.Row():
184
+ steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
185
+ cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
186
+ # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
187
+
188
+ with gr.Row():
189
+ # text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
190
+ text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
191
+ with gr.Column():
192
+ with gr.Row():
193
+ image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
194
+ with gr.Row():
195
+ seed_output = gr.Textbox(label="Seed Used", show_copy_button = True)
196
 
197
+ gr.Markdown(article_text)
198
+ with gr.Column():
199
+ gr.Examples(
200
+ examples = examples,
201
+ inputs = [text_prompt],
 
 
 
202
  )
203
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
+ # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
206
+ text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
207
+
208
+ app.launch()
209
+