Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, Autoe
|
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
@@ -20,6 +21,20 @@ MAX_IMAGE_SIZE = 2048
|
|
20 |
|
21 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@spaces.GPU()
|
24 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
25 |
if randomize_seed:
|
@@ -66,117 +81,129 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
66 |
# Unload LoRA weights if they were loaded
|
67 |
if lora_id:
|
68 |
pipe.unload_lora_weights()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
examples = [
|
71 |
"a tiny astronaut hatching from an egg on the moon",
|
72 |
"a cat holding a sign that says hello world",
|
73 |
"an anime illustration of a wiener schnitzel",
|
74 |
]
|
75 |
|
76 |
-
css="""
|
77 |
#col-container {
|
78 |
margin: 0 auto;
|
79 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
}
|
81 |
"""
|
82 |
|
83 |
-
with gr.Blocks(css=css) as
|
84 |
-
|
85 |
with gr.Column(elem_id="col-container"):
|
86 |
-
gr.Markdown(f"""# FLUX.1 [dev] LoRA
|
87 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
88 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
89 |
-
""")
|
90 |
-
|
91 |
with gr.Row():
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
maximum=MAX_SEED,
|
111 |
-
step=1,
|
112 |
-
value=0,
|
113 |
)
|
114 |
-
|
115 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
width = gr.Slider(
|
120 |
-
label="Width",
|
121 |
-
minimum=256,
|
122 |
-
maximum=MAX_IMAGE_SIZE,
|
123 |
-
step=8,
|
124 |
-
value=1024,
|
125 |
-
)
|
126 |
-
|
127 |
-
height = gr.Slider(
|
128 |
-
label="Height",
|
129 |
-
minimum=256,
|
130 |
-
maximum=MAX_IMAGE_SIZE,
|
131 |
-
step=8,
|
132 |
-
value=1024,
|
133 |
-
)
|
134 |
-
|
135 |
-
with gr.Row():
|
136 |
-
|
137 |
-
guidance_scale = gr.Slider(
|
138 |
-
label="Guidance Scale",
|
139 |
-
minimum=1,
|
140 |
-
maximum=15,
|
141 |
-
step=0.1,
|
142 |
-
value=3.5,
|
143 |
-
)
|
144 |
-
|
145 |
-
num_inference_steps = gr.Slider(
|
146 |
-
label="Number of inference steps",
|
147 |
-
minimum=1,
|
148 |
-
maximum=50,
|
149 |
-
step=1,
|
150 |
-
value=28,
|
151 |
-
)
|
152 |
-
|
153 |
-
with gr.Row():
|
154 |
-
lora_id = gr.Textbox(
|
155 |
-
label="LoRA Model ID (HuggingFace path)",
|
156 |
-
placeholder="username/lora-model",
|
157 |
-
max_lines=1
|
158 |
-
)
|
159 |
-
lora_scale = gr.Slider(
|
160 |
-
label="LoRA Scale",
|
161 |
-
minimum=0,
|
162 |
-
maximum=2,
|
163 |
-
step=0.01,
|
164 |
-
value=0.95,
|
165 |
-
)
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
cache_examples="lazy"
|
173 |
-
)
|
174 |
-
|
175 |
-
gr.on(
|
176 |
-
triggers=[run_button.click, prompt.submit],
|
177 |
-
fn = infer,
|
178 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,lora_id,lora_scale],
|
179 |
-
outputs = [result, seed]
|
180 |
-
)
|
181 |
-
|
182 |
-
demo.launch()
|
|
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
+
|
11 |
dtype = torch.bfloat16
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
|
|
21 |
|
22 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
23 |
|
24 |
+
article_text = """
|
25 |
+
<div style="text-align: center;">
|
26 |
+
<p>Enjoying the tool? Buy me a coffee and get exclusive prompt guides!</p>
|
27 |
+
<p><i>Instantly unlock helpful tips for creating better prompts!</i></p>
|
28 |
+
<div style="display: flex; justify-content: center;">
|
29 |
+
<a href="https://piczify.lemonsqueezy.com/buy/0f5206fa-68e8-42f6-9ca8-4f80c587c83e">
|
30 |
+
<img src="https://www.buymeacoffee.com/assets/img/custom_images/yellow_img.png"
|
31 |
+
alt="Buy Me a Coffee"
|
32 |
+
style="height: 40px; width: auto; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); border-radius: 10px;">
|
33 |
+
</a>
|
34 |
+
</div>
|
35 |
+
</div>
|
36 |
+
"""
|
37 |
+
|
38 |
@spaces.GPU()
|
39 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
40 |
if randomize_seed:
|
|
|
81 |
# Unload LoRA weights if they were loaded
|
82 |
if lora_id:
|
83 |
pipe.unload_lora_weights()
|
84 |
+
|
85 |
+
# def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
|
86 |
+
# if prompt == "" or prompt == None:
|
87 |
+
# return None
|
88 |
+
|
89 |
+
# if lora_id.strip() == "" or lora_id == None:
|
90 |
+
# lora_id = "black-forest-labs/FLUX.1-dev"
|
91 |
+
|
92 |
+
# key = random.randint(0, 999)
|
93 |
+
|
94 |
+
# API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
95 |
+
|
96 |
+
# API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
97 |
+
# headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
98 |
+
|
99 |
+
# # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
100 |
+
# # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
101 |
+
|
102 |
+
# prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
103 |
+
# # print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
104 |
+
|
105 |
+
# # If seed is -1, generate a random seed and use it
|
106 |
+
# if randomize_seed:
|
107 |
+
# seed = random.randint(1, 4294967296)
|
108 |
+
|
109 |
+
# payload = {
|
110 |
+
# "inputs": prompt,
|
111 |
+
# "steps": steps,
|
112 |
+
# "cfg_scale": cfg_scale,
|
113 |
+
# "seed": seed,
|
114 |
+
# "parameters": {
|
115 |
+
# "width": width, # Pass the width to the API
|
116 |
+
# "height": height # Pass the height to the API
|
117 |
+
# }
|
118 |
+
# }
|
119 |
+
|
120 |
+
# response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
121 |
+
# if response.status_code != 200:
|
122 |
+
# print(f"Error: Failed to get image. Response status: {response.status_code}")
|
123 |
+
# print(f"Response content: {response.text}")
|
124 |
+
# if response.status_code == 503:
|
125 |
+
# raise gr.Error(f"{response.status_code} : The model is being loaded")
|
126 |
+
# raise gr.Error(f"{response.status_code}")
|
127 |
|
128 |
+
# try:
|
129 |
+
# image_bytes = response.content
|
130 |
+
# image = Image.open(io.BytesIO(image_bytes))
|
131 |
+
# print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
132 |
+
# return image, seed, seed
|
133 |
+
# except Exception as e:
|
134 |
+
# print(f"Error when trying to open the image: {e}")
|
135 |
+
# return None
|
136 |
+
|
137 |
+
|
138 |
examples = [
|
139 |
"a tiny astronaut hatching from an egg on the moon",
|
140 |
"a cat holding a sign that says hello world",
|
141 |
"an anime illustration of a wiener schnitzel",
|
142 |
]
|
143 |
|
144 |
+
css = """
|
145 |
#col-container {
|
146 |
margin: 0 auto;
|
147 |
+
max-width: 960px;
|
148 |
+
}
|
149 |
+
.generate-btn {
|
150 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
151 |
+
border: none !important;
|
152 |
+
color: white !important;
|
153 |
+
}
|
154 |
+
.generate-btn:hover {
|
155 |
+
transform: translateY(-2px);
|
156 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
157 |
}
|
158 |
"""
|
159 |
|
160 |
+
with gr.Blocks(css=css) as app:
|
161 |
+
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
162 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
|
|
|
|
|
|
163 |
with gr.Row():
|
164 |
+
with gr.Column():
|
165 |
+
with gr.Row():
|
166 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
|
167 |
+
with gr.Row():
|
168 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Accordion("Advanced Settings", open=False):
|
171 |
+
with gr.Row():
|
172 |
+
lora_scale = gr.Slider(
|
173 |
+
label="LoRA Scale",
|
174 |
+
minimum=0,
|
175 |
+
maximum=2,
|
176 |
+
step=0.01,
|
177 |
+
value=0.95,
|
178 |
+
)
|
179 |
+
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
|
180 |
+
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
|
181 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
182 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
183 |
+
with gr.Row():
|
184 |
+
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
|
185 |
+
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
186 |
+
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
# text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
190 |
+
text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
|
191 |
+
with gr.Column():
|
192 |
+
with gr.Row():
|
193 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
194 |
+
with gr.Row():
|
195 |
+
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True)
|
196 |
|
197 |
+
gr.Markdown(article_text)
|
198 |
+
with gr.Column():
|
199 |
+
gr.Examples(
|
200 |
+
examples = examples,
|
201 |
+
inputs = [text_prompt],
|
|
|
|
|
|
|
202 |
)
|
203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
206 |
+
text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
207 |
+
|
208 |
+
app.launch()
|
209 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|