Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, Autoe
|
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
-
|
11 |
dtype = torch.bfloat16
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
@@ -21,7 +20,6 @@ MAX_IMAGE_SIZE = 2048
|
|
21 |
|
22 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
23 |
|
24 |
-
|
25 |
@spaces.GPU()
|
26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
27 |
if randomize_seed:
|
@@ -68,31 +66,10 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
68 |
# Unload LoRA weights if they were loaded
|
69 |
if lora_id:
|
70 |
pipe.unload_lora_weights()
|
|
|
71 |
|
72 |
|
73 |
|
74 |
-
examples = [
|
75 |
-
"a tiny astronaut hatching from an egg on the moon",
|
76 |
-
"a cat holding a sign that says hello world",
|
77 |
-
"an anime illustration of a wiener schnitzel",
|
78 |
-
]
|
79 |
-
|
80 |
-
css = """
|
81 |
-
#col-container {
|
82 |
-
margin: 0 auto;
|
83 |
-
max-width: 960px;
|
84 |
-
}
|
85 |
-
.generate-btn {
|
86 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
87 |
-
border: none !important;
|
88 |
-
color: white !important;
|
89 |
-
}
|
90 |
-
.generate-btn:hover {
|
91 |
-
transform: translateY(-2px);
|
92 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
93 |
-
}
|
94 |
-
"""
|
95 |
-
|
96 |
# with gr.Blocks(css=css) as app:
|
97 |
# gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
98 |
# with gr.Column(elem_id="col-container"):
|
@@ -147,105 +124,3 @@ css = """
|
|
147 |
# # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
148 |
|
149 |
# app.launch(share=True)
|
150 |
-
|
151 |
-
|
152 |
-
with gr.Blocks(css=css) as demo:
|
153 |
-
|
154 |
-
with gr.Column(elem_id="col-container"):
|
155 |
-
gr.Markdown(f"""# FLUX.1 [dev] LoRA
|
156 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
157 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
158 |
-
""")
|
159 |
-
|
160 |
-
with gr.Row():
|
161 |
-
|
162 |
-
prompt = gr.Text(
|
163 |
-
label="Prompt",
|
164 |
-
show_label=False,
|
165 |
-
max_lines=1,
|
166 |
-
placeholder="Enter your prompt",
|
167 |
-
container=False,
|
168 |
-
)
|
169 |
-
|
170 |
-
run_button = gr.Button("Run", scale=0)
|
171 |
-
|
172 |
-
result = gr.Image(label="Result", show_label=False)
|
173 |
-
|
174 |
-
with gr.Accordion("Advanced Settings", open=False):
|
175 |
-
|
176 |
-
seed = gr.Slider(
|
177 |
-
label="Seed",
|
178 |
-
minimum=0,
|
179 |
-
maximum=MAX_SEED,
|
180 |
-
step=1,
|
181 |
-
value=0,
|
182 |
-
)
|
183 |
-
|
184 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
185 |
-
|
186 |
-
with gr.Row():
|
187 |
-
|
188 |
-
width = gr.Slider(
|
189 |
-
label="Width",
|
190 |
-
minimum=256,
|
191 |
-
maximum=MAX_IMAGE_SIZE,
|
192 |
-
step=8,
|
193 |
-
value=1024,
|
194 |
-
)
|
195 |
-
|
196 |
-
height = gr.Slider(
|
197 |
-
label="Height",
|
198 |
-
minimum=256,
|
199 |
-
maximum=MAX_IMAGE_SIZE,
|
200 |
-
step=8,
|
201 |
-
value=1024,
|
202 |
-
)
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
|
206 |
-
guidance_scale = gr.Slider(
|
207 |
-
label="Guidance Scale",
|
208 |
-
minimum=1,
|
209 |
-
maximum=15,
|
210 |
-
step=0.1,
|
211 |
-
value=3.5,
|
212 |
-
)
|
213 |
-
|
214 |
-
num_inference_steps = gr.Slider(
|
215 |
-
label="Number of inference steps",
|
216 |
-
minimum=1,
|
217 |
-
maximum=50,
|
218 |
-
step=1,
|
219 |
-
value=28,
|
220 |
-
)
|
221 |
-
|
222 |
-
with gr.Row():
|
223 |
-
lora_id = gr.Textbox(
|
224 |
-
label="LoRA Model ID (HuggingFace path)",
|
225 |
-
placeholder="username/lora-model",
|
226 |
-
max_lines=1
|
227 |
-
)
|
228 |
-
lora_scale = gr.Slider(
|
229 |
-
label="LoRA Scale",
|
230 |
-
minimum=0,
|
231 |
-
maximum=2,
|
232 |
-
step=0.01,
|
233 |
-
value=0.95,
|
234 |
-
)
|
235 |
-
|
236 |
-
gr.Examples(
|
237 |
-
examples = examples,
|
238 |
-
fn = infer,
|
239 |
-
inputs = [prompt],
|
240 |
-
outputs = [result, seed],
|
241 |
-
cache_examples="lazy"
|
242 |
-
)
|
243 |
-
|
244 |
-
gr.on(
|
245 |
-
triggers=[run_button.click, prompt.submit],
|
246 |
-
fn = infer,
|
247 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,lora_id,lora_scale],
|
248 |
-
outputs = [result, seed]
|
249 |
-
)
|
250 |
-
|
251 |
-
demo.launch()
|
|
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
|
|
20 |
|
21 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
22 |
|
|
|
23 |
@spaces.GPU()
|
24 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
25 |
if randomize_seed:
|
|
|
66 |
# Unload LoRA weights if they were loaded
|
67 |
if lora_id:
|
68 |
pipe.unload_lora_weights()
|
69 |
+
|
70 |
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# with gr.Blocks(css=css) as app:
|
74 |
# gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
75 |
# with gr.Column(elem_id="col-container"):
|
|
|
124 |
# # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
125 |
|
126 |
# app.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|