import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( # prompt=prompt, # guidance_scale=guidance_scale, # num_inference_steps=num_inference_steps, # width=width, # height=height, # generator=generator, # output_type="pil", # good_vae=good_vae, # ): # yield img, seed # Handle LoRA loading # Load LoRA weights and prepare joint_attention_kwargs if lora_id and lora_id.strip() != "": pipe.unload_lora_weights() pipe.load_lora_weights(lora_id.strip()) joint_attention_kwargs = {"scale": lora_scale} else: joint_attention_kwargs = None try: # Call the custom pipeline function with the correct keyword argument for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, # Assuming good_vae is defined elsewhere joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name ): yield img, seed finally: # Unload LoRA weights if they were loaded if lora_id: pipe.unload_lora_weights() examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 960px; } .generate-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; border: none !important; color: white !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } """ with gr.Blocks(css=css) as app: gr.HTML("

FLUX.1-Dev with LoRA support

") with gr.Column(elem_id="col-container"): with gr.Row(): with gr.Column(): with gr.Row(): text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input") with gr.Row(): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): lora_scale = gr.Slider( label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=0.95, ) with gr.Row(): width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8) height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1) cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5) # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) with gr.Row(): # text_button = gr.Button("Run", variant='primary', elem_id="gen-button") text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"]) with gr.Column(): with gr.Row(): image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") # gr.Markdown(article_text) with gr.Column(): gr.Examples( examples = examples, inputs = [text_prompt], ) gr.on( triggers=[text_button.click, text_prompt.submit], fn = infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output, seed] ) # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed]) # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed]) app.launch(share=True)