Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import UniPCMultistepScheduler
|
3 |
+
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
|
4 |
+
from diffusers.models import UNetSpatioTemporalConditionModel
|
5 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
11 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
12 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
13 |
+
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
|
14 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
|
15 |
+
pipe.to("cuda")
|
16 |
+
|
17 |
+
@spaces.GPU()
|
18 |
+
def generate(prompt):
|
19 |
+
output = pipe(
|
20 |
+
prompt=prompt,
|
21 |
+
# negative_prompt=negative_prompt,
|
22 |
+
height=720,
|
23 |
+
width=1280,
|
24 |
+
num_frames=1,
|
25 |
+
num_inference_steps=28,
|
26 |
+
guidance_scale=5.0,
|
27 |
+
)
|
28 |
+
image = output.frames[0][0]
|
29 |
+
image = (image * 255).astype(np.uint8)
|
30 |
+
return Image.fromarray(image)
|
31 |
+
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=generate,
|
34 |
+
inputs=[
|
35 |
+
gr.Textbox(label="Input prompt"),
|
36 |
+
# gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024),
|
37 |
+
# gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024),
|
38 |
+
# gr.Textbox(label="Lora ID", placeholder="Optional"),
|
39 |
+
# gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Lora Scale", value=1)
|
40 |
+
],
|
41 |
+
outputs=gr.Image(label="output"),
|
42 |
+
)
|
43 |
+
|
44 |
+
iface.launch()
|