import gradio as gr import torch from datasets import load_dataset from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech model_id = "ovieyra21/speecht5_tts_mabama_nl" # update with your model id model = SpeechT5ForTextToSpeech.from_pretrained(model_id) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) processor = SpeechT5Processor.from_pretrained(model_id) replacements = [ ("à", "a"), ("â", "a"), ("ç", "c"), ("è", "e"), ("ë", "e"), ("î", "i"), ("ï", "i"), ("ô", "o"), ("ù", "u"), ("û", "u"), ("ü", "u"), ] title = "Text-to-Speech" description = """ Demo for text-to-speech translation in French. Demo uses [Sandiago21/speecht5_finetuned_facebook_voxpopuli_french](https://huggingface.co/Sandiago21/speecht5_finetuned_facebook_voxpopuli_french) checkpoint, which is based on Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model and is fine-tuned in French Audio dataset ![Text-to-Speech (TTS)"](https://geekflare.com/wp-content/uploads/2021/07/texttospeech-1200x385.png "Diagram of Text-to-Speech (TTS)") """ def cleanup_text(text): for src, dst in replacements: text = text.replace(src, dst) return text def synthesize_speech(text): text = cleanup_text(text) inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) return (16000, speech.cpu().numpy()) # Devuelve el audio directamente syntesize_speech_gradio = gr.Interface( synthesize_speech, inputs=gr.Textbox(label="Text", placeholder="Type something here..."), outputs=gr.Audio(), examples=["Probando audio"], title=title, description=description, ).launch()