ovieyra21 commited on
Commit
2636815
·
verified ·
1 Parent(s): b51dfa4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -20
app.py CHANGED
@@ -1,10 +1,21 @@
1
  import torch
2
  import gradio as gr
3
- from transformers import pipeline
 
 
4
  from scipy.io import wavfile
 
 
 
 
 
 
5
 
6
- MODEL_NAME = "openai/whisper-large-v3"
 
7
  BATCH_SIZE = 8
 
 
8
 
9
  device = 0 if torch.cuda.is_available() else "cpu"
10
 
@@ -15,30 +26,217 @@ pipe = pipeline(
15
  device=device,
16
  )
17
 
18
- def transcribe_simple(inputs_path, task):
 
 
 
 
 
 
 
19
  if inputs_path is None:
20
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
 
 
 
 
 
 
21
 
22
- sampling_rate, inputs = wavfile.read(inputs_path)
 
 
23
  out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
24
  text = out["text"]
25
 
26
- return [[transcript] for transcript in text.split(".") if transcript], text
 
 
27
 
28
- with gr.Blocks() as demo:
29
- with gr.Row():
30
- with gr.Column():
31
- audio_input = gr.Audio(source="upload", type="filepath", label="Upload Audio")
32
- task_input = gr.Dropdown(choices=["transcribe", "translate"], value="transcribe", label="Task")
33
- submit_button = gr.Button("Transcribe")
34
- with gr.Column():
35
- output_text = gr.Dataframe(label="Transcripts")
36
- output_full_text = gr.Textbox(label="Full Text")
37
-
38
- submit_button.click(
39
- transcribe_simple,
40
- inputs=[audio_input, task_input],
41
- outputs=[output_text, output_full_text],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- demo.launch()
 
1
  import torch
2
  import gradio as gr
3
+ import yt_dlp as youtube_dl
4
+ import numpy as np
5
+ from datasets import Dataset, Audio
6
  from scipy.io import wavfile
7
+ from transformers import pipeline
8
+ from transformers.pipelines.audio_utils import ffmpeg_read
9
+ import tempfile
10
+ import os
11
+ import time
12
+ import demucs.api
13
 
14
+ MODEL_NAME = "openai/whisper-large-v2"
15
+ DEMUCS_MODEL_NAME = "htdemucs_ft"
16
  BATCH_SIZE = 8
17
+ FILE_LIMIT_MB = 1000
18
+ YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
19
 
20
  device = 0 if torch.cuda.is_available() else "cpu"
21
 
 
26
  device=device,
27
  )
28
 
29
+ separator = demucs.api.Separator(model=DEMUCS_MODEL_NAME)
30
+
31
+ def separate_vocal(path):
32
+ origin, separated = separator.separate_audio_file(path)
33
+ demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
34
+ return path
35
+
36
+ def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token, progress=gr.Progress()):
37
  if inputs_path is None:
38
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
39
+ if not dataset_name:
40
+ raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
41
+ if oauth_token is None:
42
+ raise gr.Error("No OAuth token submitted! Please login to use this demo.")
43
+
44
+ total_step = 4
45
+ current_step = 0
46
 
47
+ current_step += 1
48
+ progress((current_step, total_step), desc="Transcribe using Whisper.")
49
+ sampling_rate, inputs = wavfile.read(inputs_path)
50
  out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
51
  text = out["text"]
52
 
53
+ current_step += 1
54
+ progress((current_step, total_step), desc="Merge chunks.")
55
+ chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)
56
 
57
+ current_step += 1
58
+ progress((current_step, total_step), desc="Create dataset.")
59
+ transcripts = []
60
+ audios = []
61
+ with tempfile.TemporaryDirectory() as tmpdirname:
62
+ for i, chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")):
63
+ arr = chunk["audio"]
64
+ path = os.path.join(tmpdirname, f"{i}.wav")
65
+ wavfile.write(path, sampling_rate, arr)
66
+
67
+ if use_demucs == "separate-audio":
68
+ print(f"Separating vocals #{i}")
69
+ path = separate_vocal(path)
70
+
71
+ audios.append(path)
72
+ transcripts.append(chunk["text"])
73
+
74
+ dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
75
+
76
+ current_step += 1
77
+ progress((current_step, total_step), desc="Push dataset.")
78
+ dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
79
+
80
+ return [[transcript] for transcript in transcripts], text
81
+
82
+ def _return_yt_html_embed(yt_url):
83
+ video_id = yt_url.split("?v=")[-1]
84
+ HTML_str = (
85
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
86
+ " </center>"
87
  )
88
+ return HTML_str
89
+
90
+ def download_yt_audio(yt_url, filename):
91
+ info_loader = youtube_dl.YoutubeDL()
92
+
93
+ try:
94
+ info = info_loader.extract_info(yt_url, download=False)
95
+ except youtube_dl.utils.DownloadError as err:
96
+ raise gr.Error(str(err))
97
+
98
+ file_length = info["duration_string"]
99
+ file_h_m_s = file_length.split(":")
100
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
101
+
102
+ if len(file_h_m_s) == 1:
103
+ file_h_m_s.insert(0, 0)
104
+ if len(file_h_m_s) == 2:
105
+ file_h_m_s.insert(0, 0)
106
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
107
+
108
+ if file_length_s > YT_LENGTH_LIMIT_S:
109
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
110
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
111
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
112
+
113
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
114
+
115
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
116
+ try:
117
+ ydl.download([yt_url])
118
+ except youtube_dl.utils.ExtractorError as err:
119
+ raise gr.Error(str(err))
120
+
121
+ def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token, max_filesize=75.0, dataset_sampling_rate=24000, progress=gr.Progress()):
122
+ if yt_url is None:
123
+ raise gr.Error("No YouTube link submitted! Please put a working link.")
124
+ if not dataset_name:
125
+ raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
126
+ if oauth_token is None:
127
+ raise gr.Error("No OAuth token submitted! Please login to use this demo.")
128
+
129
+ total_step = 5
130
+ current_step = 0
131
+
132
+ html_embed_str = _return_yt_html_embed(yt_url)
133
+ current_step += 1
134
+ progress((current_step, total_step), desc="Load video.")
135
+
136
+ with tempfile.TemporaryDirectory() as tmpdirname:
137
+ filepath = os.path.join(tmpdirname, "video.mp4")
138
+
139
+ download_yt_audio(yt_url, filepath)
140
+ inputs = ffmpeg_read(filepath, pipe.feature_extractor.sampling_rate)
141
+ inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
142
+
143
+ current_step += 1
144
+ progress((current_step, total_step), desc="Transcribe using Whisper.")
145
+ out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
146
+ text = out["text"]
147
+
148
+ inputs = ffmpeg_read(filepath, dataset_sampling_rate)
149
+
150
+ current_step += 1
151
+ progress((current_step, total_step), desc="Merge chunks.")
152
+ chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
153
+
154
+ current_step += 1
155
+ progress((current_step, total_step), desc="Create dataset.")
156
+ transcripts = []
157
+ audios = []
158
+ with tempfile.TemporaryDirectory() as tmpdirname:
159
+ for i, chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")):
160
+ arr = chunk["audio"]
161
+ path = os.path.join(tmpdirname, f"{i}.wav")
162
+ wavfile.write(path, dataset_sampling_rate, arr)
163
+
164
+ if use_demucs == "separate-audio":
165
+ print(f"Separating vocals #{i}")
166
+ path = separate_vocal(path)
167
+
168
+ audios.append(path)
169
+ transcripts.append(chunk["text"])
170
+
171
+ dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
172
+
173
+ current_step += 1
174
+ progress((current_step, total_step), desc="Push dataset.")
175
+ dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
176
+
177
+ return html_embed_str, [[transcript] for transcript in transcripts], text
178
+
179
+ def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars=".!:;?", min_duration=5):
180
+ min_duration = int(min_duration * sampling_rate)
181
+ new_chunks = []
182
+ while chunks:
183
+ current_chunk = chunks.pop(0)
184
+ begin, end = current_chunk["timestamp"]
185
+ begin, end = int(begin * sampling_rate), int(end * sampling_rate)
186
+ current_dur = end - begin
187
+ text = current_chunk["text"]
188
+ chunk_to_concat = [audio_array[begin:end]]
189
+ while chunks and (text[-1] not in stop_chars or (current_dur < min_duration)):
190
+ ch = chunks.pop(0)
191
+ begin, end = ch["timestamp"]
192
+ begin, end = int(begin * sampling_rate), int(end * sampling_rate)
193
+ current_dur += end - begin
194
+ text = "".join([text, ch["text"]])
195
+ chunk_to_concat.append(audio_array[begin:end])
196
+ new_chunks.append({
197
+ "text": text.strip(),
198
+ "audio": np.concatenate(chunk_to_concat),
199
+ })
200
+ return new_chunks
201
+
202
+ with gr.Blocks() as demo:
203
+ with gr.Tab("Local file"):
204
+ with gr.Row():
205
+ with gr.Column():
206
+ local_audio_input = gr.Audio(source="upload", type="filepath", label="Upload Audio")
207
+ task_input = gr.Dropdown(choices=["transcribe", "translate"], value="transcribe", label="Task")
208
+ use_demucs_input = gr.Dropdown(choices=["do-nothing", "separate-audio"], value="do-nothing", label="Audio preprocessing")
209
+ dataset_name_input = gr.Textbox(label="Dataset name")
210
+ hf_token = gr.Textbox(label="HuggingFace Token")
211
+ submit_local_button = gr.Button("Transcribe")
212
+ with gr.Column():
213
+ local_output_text = gr.Dataframe(label="Transcripts")
214
+ local_output_full_text = gr.Textbox(label="Full Text")
215
+
216
+ submit_local_button.click(
217
+ transcribe,
218
+ inputs=[local_audio_input, task_input, use_demucs_input, dataset_name_input, hf_token],
219
+ outputs=[local_output_text, local_output_full_text],
220
+ )
221
+
222
+ with gr.Tab("YouTube video"):
223
+ with gr.Row():
224
+ with gr.Column():
225
+ yt_url_input = gr.Textbox(label="YouTube URL")
226
+ yt_task_input = gr.Dropdown(choices=["transcribe", "translate"], value="transcribe", label="Task")
227
+ yt_use_demucs_input = gr.Dropdown(choices=["do-nothing", "separate-audio"], value="do-nothing", label="Audio preprocessing")
228
+ yt_dataset_name_input = gr.Textbox(label="Dataset name")
229
+ yt_hf_token = gr.Textbox(label="HuggingFace Token")
230
+ submit_yt_button = gr.Button("Transcribe")
231
+ with gr.Column():
232
+ yt_html_embed_str = gr.HTML()
233
+ yt_output_text = gr.Dataframe(label="Transcripts")
234
+ yt_output_full_text = gr.Textbox(label="Full Text")
235
+
236
+ submit_yt_button.click(
237
+ yt_transcribe,
238
+ inputs=[yt_url_input, yt_task_input, yt_use_demucs_input, yt_dataset_name_input, yt_hf_token],
239
+ outputs=[yt_html_embed_str, yt_output_text, yt_output_full_text],
240
+ )
241
 
242
+ demo.launch(share=True)