Update app.py
Browse files
app.py
CHANGED
@@ -13,277 +13,8 @@ import os
|
|
13 |
import time
|
14 |
import demucs.api
|
15 |
|
16 |
-
|
17 |
-
DEMUCS_MODEL_NAME = "htdemucs_ft"
|
18 |
-
BATCH_SIZE = 8
|
19 |
-
FILE_LIMIT_MB = 1000
|
20 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
21 |
|
22 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
23 |
-
|
24 |
-
pipe = pipeline(
|
25 |
-
task="automatic-speech-recognition",
|
26 |
-
model=MODEL_NAME,
|
27 |
-
chunk_length_s=30,
|
28 |
-
device=device,
|
29 |
-
)
|
30 |
-
|
31 |
-
separator = demucs.api.Separator(model=DEMUCS_MODEL_NAME, )
|
32 |
-
|
33 |
-
def separate_vocal(path):
|
34 |
-
origin, separated = separator.separate_audio_file(path)
|
35 |
-
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
|
36 |
-
return path
|
37 |
-
|
38 |
-
def _return_yt_html_embed(yt_url):
|
39 |
-
video_id = yt_url.split("?v=")[-1]
|
40 |
-
HTML_str = (
|
41 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
42 |
-
" </center>"
|
43 |
-
)
|
44 |
-
return gr.HTML(value=HTML_str)
|
45 |
-
|
46 |
-
def download_yt_audio(yt_url, filename):
|
47 |
-
info_loader = youtube_dl.YoutubeDL()
|
48 |
-
|
49 |
-
try:
|
50 |
-
info = info_loader.extract_info(yt_url, download=False)
|
51 |
-
except youtube_dl.utils.DownloadError as err:
|
52 |
-
raise gr.Error(str(err))
|
53 |
-
|
54 |
-
file_length = info["duration_string"]
|
55 |
-
file_h_m_s = file_length.split(":")
|
56 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
57 |
-
|
58 |
-
if len(file_h_m_s) == 1:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
if len(file_h_m_s) == 2:
|
61 |
-
file_h_m_s.insert(0, 0)
|
62 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
63 |
-
|
64 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
65 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
66 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
67 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
68 |
-
|
69 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
70 |
-
|
71 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
72 |
-
try:
|
73 |
-
ydl.download([yt_url])
|
74 |
-
except youtube_dl.utils.ExtractorError as err:
|
75 |
-
raise gr.Error(str(err))
|
76 |
-
|
77 |
-
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000,
|
78 |
-
progress=gr.Progress()):
|
79 |
-
|
80 |
-
if yt_url is None:
|
81 |
-
raise gr.Error("No youtube link submitted! Please put a working link.")
|
82 |
-
if dataset_name is None:
|
83 |
-
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
|
84 |
-
|
85 |
-
total_step = 5
|
86 |
-
current_step = 0
|
87 |
-
|
88 |
-
HTML_str = _return_yt_html_embed(yt_url)
|
89 |
-
|
90 |
-
if oauth_token is None:
|
91 |
-
gr.Warning("Make sure to click and login before using this demo.")
|
92 |
-
return HTML_str, [["transcripts will appear here"]], ""
|
93 |
-
|
94 |
-
current_step += 1
|
95 |
-
progress((current_step, total_step), desc="Load video.")
|
96 |
-
|
97 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
98 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
99 |
-
|
100 |
-
download_yt_audio(yt_url, filepath)
|
101 |
-
with open(filepath, "rb") as f:
|
102 |
-
inputs_path = f.read()
|
103 |
-
|
104 |
-
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
105 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
106 |
-
|
107 |
-
current_step += 1
|
108 |
-
progress((current_step, total_step), desc="Transcribe using Whisper.")
|
109 |
-
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
110 |
-
|
111 |
-
text = out["text"]
|
112 |
-
|
113 |
-
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
114 |
-
|
115 |
-
current_step += 1
|
116 |
-
progress((current_step, total_step), desc="Merge chunks.")
|
117 |
-
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
|
118 |
-
|
119 |
-
current_step += 1
|
120 |
-
progress((current_step, total_step), desc="Create dataset.")
|
121 |
-
|
122 |
-
transcripts = []
|
123 |
-
audios = []
|
124 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
125 |
-
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")):
|
126 |
-
|
127 |
-
# TODO: make sure 1D or 2D?
|
128 |
-
arr = chunk["audio"]
|
129 |
-
path = os.path.join(tmpdirname, f"{i}.wav")
|
130 |
-
wavfile.write(path, dataset_sampling_rate, arr)
|
131 |
-
|
132 |
-
if use_demucs == "separate-audio":
|
133 |
-
# use demucs tp separate vocals
|
134 |
-
print(f"Separating vocals #{i}")
|
135 |
-
path = separate_vocal(path)
|
136 |
-
|
137 |
-
audios.append(path)
|
138 |
-
transcripts.append(chunk["text"])
|
139 |
-
|
140 |
-
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
|
141 |
-
|
142 |
-
current_step += 1
|
143 |
-
progress((current_step, total_step), desc="Push dataset.")
|
144 |
-
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
145 |
-
|
146 |
-
|
147 |
-
return HTML_str, [[transcript] for transcript in transcripts], text
|
148 |
-
|
149 |
-
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
|
150 |
-
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
|
151 |
-
# return list of dictionnaries (text, audio)
|
152 |
-
# min duration is in seconds
|
153 |
-
min_duration = int(min_duration * sampling_rate)
|
154 |
-
|
155 |
-
|
156 |
-
new_chunks = []
|
157 |
-
while chunks:
|
158 |
-
current_chunk = chunks.pop(0)
|
159 |
-
|
160 |
-
begin, end = current_chunk["timestamp"]
|
161 |
-
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
162 |
-
|
163 |
-
current_dur = end-begin
|
164 |
-
|
165 |
-
text = current_chunk["text"]
|
166 |
-
|
167 |
-
|
168 |
-
chunk_to_concat = [audio_array[begin:end]]
|
169 |
-
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
|
170 |
-
ch = chunks.pop(0)
|
171 |
-
begin, end = ch["timestamp"]
|
172 |
-
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
173 |
-
current_dur += end-begin
|
174 |
-
|
175 |
-
text = "".join([text, ch["text"]])
|
176 |
-
|
177 |
-
# TODO: add silence ?
|
178 |
-
chunk_to_concat.append(audio_array[begin:end])
|
179 |
-
|
180 |
-
|
181 |
-
new_chunks.append({
|
182 |
-
"text": text.strip(),
|
183 |
-
"audio": np.concatenate(chunk_to_concat),
|
184 |
-
})
|
185 |
-
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
|
186 |
-
|
187 |
-
return new_chunks
|
188 |
-
|
189 |
-
css = """
|
190 |
-
#intro{
|
191 |
-
max-width: 100%;
|
192 |
-
text-align: center;
|
193 |
-
margin: 0 auto;
|
194 |
-
}
|
195 |
-
"""
|
196 |
-
with gr.Blocks(css=css) as demo:
|
197 |
-
with gr.Row():
|
198 |
-
gr.LoginButton()
|
199 |
-
gr.LogoutButton()
|
200 |
-
|
201 |
-
with gr.Tab("YouTube"):
|
202 |
-
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
|
203 |
-
gr.Markdown(
|
204 |
-
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
205 |
-
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
206 |
-
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
207 |
-
)
|
208 |
-
with gr.Row():
|
209 |
-
with gr.Column():
|
210 |
-
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
211 |
-
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
212 |
-
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
213 |
-
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
214 |
-
|
215 |
-
with gr.Row():
|
216 |
-
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
|
217 |
-
submit_youtube = gr.Button("Submit")
|
218 |
-
|
219 |
-
with gr.Column():
|
220 |
-
html_youtube = gr.HTML()
|
221 |
-
dataset_youtube = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
222 |
-
transcript_youtube = gr.Textbox(label="Transcription")
|
223 |
-
|
224 |
-
with gr.Tab("Microphone or Audio file"):
|
225 |
-
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
|
226 |
-
gr.Markdown(
|
227 |
-
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
228 |
-
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
229 |
-
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
230 |
-
)
|
231 |
-
with gr.Row():
|
232 |
-
with gr.Column():
|
233 |
-
audio_file = gr.Audio(type="filepath")
|
234 |
-
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
235 |
-
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="no-post-processing")
|
236 |
-
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
237 |
-
|
238 |
-
with gr.Row():
|
239 |
-
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
|
240 |
-
submit_file = gr.Button("Submit")
|
241 |
-
|
242 |
-
with gr.Column():
|
243 |
-
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
244 |
-
transcript_file = gr.Textbox(label="Transcription")
|
245 |
-
|
246 |
-
def function_transcribe(audio_file, task_file, cleaning_file, textbox_file, max_filesize=75.0, dataset_sampling_rate = 24000, progress=gr.Progress()):
|
247 |
-
if isinstance(audio_file, str):
|
248 |
-
audio_file = open(audio_file, "rb")
|
249 |
-
|
250 |
-
_, extension = os.path.splitext(audio_file.name)
|
251 |
-
if extension != '.mp3' and extension != '.wav':
|
252 |
-
raise RuntimeError("Invalid file format. Supported formats are mp3 and wav.")
|
253 |
-
|
254 |
-
if audio_file.size // (1024 * 1024) > FILE_LIMIT_MB:
|
255 |
-
raise RuntimeError(f"File size exceeds the limit ({extension} file {FILE_LIMIT_MB} MB).")
|
256 |
-
|
257 |
-
task = task_file.lower()
|
258 |
-
if task != "transcribe" and task != "translate":
|
259 |
-
raise RuntimeError("Unsupported task. Task must be either 'transcribe' or 'translate'.")
|
260 |
-
|
261 |
-
cleanup = bool(cleaning_file)
|
262 |
-
|
263 |
-
dataset_name = textbox_file.strip().replace("/", "_").replace(" ", "_")
|
264 |
-
|
265 |
-
audio_content = audio_file.read()
|
266 |
-
audio_array, sample_rate = wavfile.imread(BytesIO(audio_content), "wav")
|
267 |
-
|
268 |
-
chunks = naive_postprocess_whisper_chunks(audio_array, sample_rate, stop_chars=".<>?", min_duration=5)
|
269 |
-
|
270 |
-
texts = whisper_batch_transcribe(chunks, model=MODEL_NAME, device=device, task=task)
|
271 |
-
|
272 |
-
if cleanup:
|
273 |
-
cleaned_chunks = clean_audio_chunks(chunks, audio_array, sample_rate)
|
274 |
-
cleaned_texts = whisper_batch_transcribe(cleaned_chunks, model=MODEL_NAME, device=device, task=task)
|
275 |
-
texts = cleaned_texts
|
276 |
-
|
277 |
-
texts = [t.strip() for t in texts]
|
278 |
-
|
279 |
-
dataset = Dataset.from_dict({"text": texts})
|
280 |
-
if dataset_name:
|
281 |
-
dataset.push_to_hub(dataset_name, repo_type="dataset", private=True)
|
282 |
-
|
283 |
-
return dataset, "\n\n".join(texts)
|
284 |
-
|
285 |
-
submit_file.click(function_transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])
|
286 |
-
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube])
|
287 |
def function_transcribe(audio_file, task_file, cleaning_file, textbox_file, max_filesize=75.0, dataset_sampling_rate = 24000, progress=gr.Progress()):
|
288 |
if isinstance(audio_file, str):
|
289 |
audio_file = open(audio_file, "rb")
|
@@ -323,4 +54,6 @@ def function_transcribe(audio_file, task_file, cleaning_file, textbox_file, max_
|
|
323 |
|
324 |
return dataset, "\n\n".join(texts)
|
325 |
|
326 |
-
|
|
|
|
|
|
13 |
import time
|
14 |
import demucs.api
|
15 |
|
16 |
+
# Your imports and other functions remain the same
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def function_transcribe(audio_file, task_file, cleaning_file, textbox_file, max_filesize=75.0, dataset_sampling_rate = 24000, progress=gr.Progress()):
|
19 |
if isinstance(audio_file, str):
|
20 |
audio_file = open(audio_file, "rb")
|
|
|
54 |
|
55 |
return dataset, "\n\n".join(texts)
|
56 |
|
57 |
+
# Continuing with the rest of the script
|
58 |
+
|
59 |
+
demo.launch(debug=True)
|