owaiskha9654 commited on
Commit
0058211
β€’
1 Parent(s): 87148f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -1,15 +1,15 @@
1
  import numpy as np
2
  import torch
3
  from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
4
- from transformers import BertForSequenceClassification,BertTokenizer
5
 
6
  import gradio as gr
7
  from typing import Dict
8
 
9
 
10
  num_labels=14
11
- model = BertForSequenceClassification.from_pretrained("owaiskha9654/Multi-Label-Classification-of-PubMed-Articles", num_labels=num_labels)
12
- tokenizer = BertTokenizer.from_pretrained('owaiskha9654/Multi-Label-Classification-of-PubMed-Articles', do_lower_case=True)
13
 
14
 
15
  def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str, float]:
@@ -23,10 +23,10 @@ def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str,
23
  test_attention_masks = test_encodings['attention_mask']
24
  # Make tensors out of data
25
  test_inputs = torch.tensor(test_input_ids)
26
- test_labels = torch.tensor(test_labels)
27
  test_masks = torch.tensor(test_attention_masks)
28
  # Create test dataloader
29
- test_data = TensorDataset(test_inputs, test_masks, test_labels,)# test_token_types)
30
  test_sampler = SequentialSampler(test_data)
31
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
32
 
@@ -34,7 +34,7 @@ def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str,
34
  model.eval()
35
 
36
  #track variables
37
- logit_preds,true_labels,pred_labels,tokenized_texts = [],[],[],[]
38
 
39
  # Predict
40
  for i, batch in enumerate(test_dataloader):
@@ -53,15 +53,15 @@ def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str,
53
 
54
  tokenized_texts.append(b_input_ids)
55
  logit_preds.append(b_logit_pred)
56
- true_labels.append(b_labels)
57
  pred_labels.append(pred_label)
58
 
59
  # Flatten outputs
60
  tokenized_texts = [item for sublist in tokenized_texts for item in sublist]
61
  pred_labels = [item for sublist in pred_labels for item in sublist]
62
- true_labels = [item for sublist in true_labels for item in sublist]
63
  # Converting flattened binary values to boolean values
64
- true_bools = [tl==1 for tl in true_labels]
65
 
66
 
67
  #prediction = model.predict(tokenized)[0]
@@ -69,7 +69,7 @@ def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str,
69
  # "negative": float(prediction[0]),
70
  # "positive": float(prediction[1])
71
  #}
72
- return true_bools
73
 
74
 
75
  model_input = gr.Textbox("Input text here", show_label=False)
@@ -127,4 +127,4 @@ app = gr.Interface(
127
  analytics_enabled=False,
128
  )
129
 
130
- app.launch(enable_queue=True)
 
1
  import numpy as np
2
  import torch
3
  from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
4
+ # from transformers import BertForSequenceClassification,BertTokenizer
5
 
6
  import gradio as gr
7
  from typing import Dict
8
 
9
 
10
  num_labels=14
11
+ #model = BertForSequenceClassification.from_pretrained("owaiskha9654/Multi-Label-Classification-of-PubMed-Articles", num_labels=num_labels)
12
+ #tokenizer = BertTokenizer.from_pretrained('owaiskha9654/Multi-Label-Classification-of-PubMed-Articles', do_lower_case=True)
13
 
14
 
15
  def Multi_Label_Classification_of_Pubmed_Articles(model_input: str) -> Dict[str, float]:
 
23
  test_attention_masks = test_encodings['attention_mask']
24
  # Make tensors out of data
25
  test_inputs = torch.tensor(test_input_ids)
26
+ #test_labels = torch.tensor(test_labels)
27
  test_masks = torch.tensor(test_attention_masks)
28
  # Create test dataloader
29
+ test_data = TensorDataset(test_inputs, test_masks, )#test_labels, test_token_types)
30
  test_sampler = SequentialSampler(test_data)
31
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
32
 
 
34
  model.eval()
35
 
36
  #track variables
37
+ logit_preds,pred_labels,tokenized_texts = [],[],[]
38
 
39
  # Predict
40
  for i, batch in enumerate(test_dataloader):
 
53
 
54
  tokenized_texts.append(b_input_ids)
55
  logit_preds.append(b_logit_pred)
56
+ #true_labels.append(b_labels)
57
  pred_labels.append(pred_label)
58
 
59
  # Flatten outputs
60
  tokenized_texts = [item for sublist in tokenized_texts for item in sublist]
61
  pred_labels = [item for sublist in pred_labels for item in sublist]
62
+ # true_labels = [item for sublist in true_labels for item in sublist]
63
  # Converting flattened binary values to boolean values
64
+ # true_bools = [tl==1 for tl in true_labels]
65
 
66
 
67
  #prediction = model.predict(tokenized)[0]
 
69
  # "negative": float(prediction[0]),
70
  # "positive": float(prediction[1])
71
  #}
72
+ return pred_labels
73
 
74
 
75
  model_input = gr.Textbox("Input text here", show_label=False)
 
127
  analytics_enabled=False,
128
  )
129
 
130
+ app.launch(inline=True,share=True)