owaiskha9654 commited on
Commit
03d7b11
·
1 Parent(s): 00a50b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -28
app.py CHANGED
@@ -8,7 +8,6 @@ from ultralyticsplus import YOLO
8
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/20.jpeg', '20.jpeg')
9
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/30.jpeg', '30.jpeg')
10
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/17.jpeg', '17.jpeg')
11
-
12
  def yolov8_inference(
13
  image: gr.inputs.Image = None,
14
  model_path: gr.inputs.Dropdown = None,
@@ -31,35 +30,35 @@ def yolov8_inference(
31
  model.conf = conf_threshold
32
  model.iou = iou_threshold
33
  results = model.predict(image, imgsz=image_size, )#return_outputs=True)
34
- print(results)
 
 
35
  object_prediction_list = []
36
- for _, image_results in enumerate(results):
37
- if len(image_results)!=0:
38
- image_predictions_in_xyxy_format = image_results#['det']
39
- for pred in image_predictions_in_xyxy_format:
40
- print(pred)
41
- x1, y1, x2, y2 = (
42
- int(pred[0]),
43
- int(pred[1]),
44
- int(pred[2]),
45
- int(pred[3]),
46
- )
47
- bbox = [x1, y1, x2, y2]
48
- score = pred[4]
49
- category_name = model.model.names[int(pred[5])]
50
- category_id = pred[5]
51
- object_prediction = ObjectPrediction(
52
- bbox=bbox,
53
- category_id=int(category_id),
54
- score=score,
55
- category_name=category_name,
56
- )
57
- object_prediction_list.append(object_prediction)
58
-
59
  image = read_image(image)
60
  output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
61
- return output_image['image']
62
-
63
 
64
  inputs = [
65
  gr.inputs.Image(type="filepath", label="Input Image"),
@@ -71,7 +70,7 @@ inputs = [
71
  ]
72
 
73
  outputs = gr.outputs.Image(type="filepath", label="Output Image")
74
- title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
75
 
76
  examples = [['20.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45], ['30.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45],]# ['17.jpeg', 'owaiskha9654/yolov8-custom_objects', 1280, 0.25, 0.45]]
77
  demo_app = gr.Interface(
 
8
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/20.jpeg', '20.jpeg')
9
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/30.jpeg', '30.jpeg')
10
  torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/17.jpeg', '17.jpeg')
 
11
  def yolov8_inference(
12
  image: gr.inputs.Image = None,
13
  model_path: gr.inputs.Dropdown = None,
 
30
  model.conf = conf_threshold
31
  model.iou = iou_threshold
32
  results = model.predict(image, imgsz=image_size, )#return_outputs=True)
33
+ print("Outputs", results[0].numpy())
34
+ # data = np.array(results[0].numpy(), dtype=np.float32)
35
+ print("Boxexes",results[0].boxes.boxes)
36
  object_prediction_list = []
37
+ outputs = results[0].boxes.boxes.numpy()
38
+ if len(outputs)!=0
39
+ for pred in outputs:
40
+ print(type(pred),pred)
41
+ x1, y1, x2, y2 = (
42
+ int(pred[0]),
43
+ int(pred[1]),
44
+ int(pred[2]),
45
+ int(pred[3]),
46
+ )
47
+ bbox = [x1, y1, x2, y2]
48
+ score = pred[4]
49
+ category_name = model.model.names[int(pred[5])]
50
+ category_id = pred[5]
51
+ object_prediction = ObjectPrediction(
52
+ bbox=bbox,
53
+ category_id=int(category_id),
54
+ score=score,
55
+ category_name=category_name,
56
+ )
57
+ object_prediction_list.append(object_prediction)
58
+
 
59
  image = read_image(image)
60
  output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
61
+ return output_image['image']
 
62
 
63
  inputs = [
64
  gr.inputs.Image(type="filepath", label="Input Image"),
 
70
  ]
71
 
72
  outputs = gr.outputs.Image(type="filepath", label="Output Image")
73
+ title = "Custom YOLOv8: Trained on Industrial Equipments predictions"
74
 
75
  examples = [['20.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45], ['30.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45],]# ['17.jpeg', 'owaiskha9654/yolov8-custom_objects', 1280, 0.25, 0.45]]
76
  demo_app = gr.Interface(