File size: 3,171 Bytes
88413ab
666f810
 
ed9aac5
666f810
f42dcac
88413ab
666f810
ed9aac5
47bfd84
88413ab
2fa0634
 
 
 
 
 
 
 
 
 
 
 
 
 
ed9aac5
2fa0634
88413ab
 
 
 
82d5b80
88413ab
 
47bfd84
0af87d2
47bfd84
0af87d2
47bfd84
 
 
0af87d2
666f810
 
 
2fa0634
 
88413ab
84718ed
2fa0634
de6fe4c
2fa0634
4121ad0
 
 
 
 
2fa0634
666f810
2fa0634
 
ed9aac5
 
47bfd84
ed9aac5
 
 
 
 
 
 
 
47bfd84
ed9aac5
1503067
2fa0634
 
 
 
 
 
 
 
 
 
 
 
738bf68
 
ed9aac5
 
 
 
 
da91c46
ed9aac5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# imports
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import gradio as gr
import whisper

# the model we are using for ASR, options are small, medium, large and largev2 (large and largev2 don't fit on huggingface cpu)
model = whisper.load_model("small")


# A table to look up all the languages
language_id_lookup = {
            "English"   : "en",
            "German"    : "de",
            "Greek"     : "el",
            "Spanish"   : "es",
            "Finnish"   : "fi",
            "Russian"   : "ru",
            "Hungarian" : "hu",
            "Dutch"     : "nl",
            "French"    : "fr",
            'Polish'    : "pl",
            'Portuguese': "pt",
            'Italian'   : "it",
            }



# The predict function. audio, language and mic_audio are all parameters directly passed by gradio 
# which means they are user inputted. They are specified in gr.inputs[] block at the bottom. The 
# gr.outputs[] block will specify the output type. 
def predict(audio, language, mic_audio=None):
    
    # checks if mic_audio is used, otherwise feeds model uploaded audio
    if mic_audio is not None:
        input_audio = mic_audio
    elif audio is not None:
        input_audio = audio
    else:
        return "(please provide audio)"

    audio = whisper.load_audio(input_audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    if(language == "Detect Language"):
        outLanguage, probs = model._detect_language(mel)
        print("Detected language is: " + outLanguage)
    else:
        outLanguage = language_id_lookup[language.split()[0]]

    options = whisper.DecodingOptions(fp16 = False, language = outLanguage)
    result = whisper.decode(model, mel, options)

    


    
    print(result.text + " " + outLanguage)
    return result.text, outLanguage



title = "Demo for Whisper -> Something -> XLS-R"

description = """
<b>How to use:</b> Upload an audio file or record using the microphone. The audio is converted to mono and resampled to 16 kHz before
being passed into the model. The output is the text transcription of the audio.
"""

gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(label="Upload Speech", source="upload", type="filepath"),
        gr.inputs.Dropdown(['English Text',
                            'German Text',
                            'Greek Text',
                            'Spanish Text',
                            'Finnish Text',
                            'Russian Text',
                            'Hungarian Text',
                            'Dutch Text',
                            'French Text',
                            'Polish Text',
                            'Portuguese Text',
                            'Italian Text',
                            'Detect Language'], type="value", default='English Text', label="Select the Language of the that you are speaking in."),
        gr.Audio(label="Record Speech", source="microphone", type="filepath"),
    ],
    outputs=[
        gr.Text(label="Transcription"),
    ],
    title=title,
    description=description,
).launch()