Demo / app.py
chinmaydan's picture
Trying a commit
b6907f5
raw
history blame
1.62 kB
import gradio as gr
#import librosa
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = SpeechT5ForSpeechToText.from_pretrained("openai/whisper-large")
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
def predict(audio, mic_audio=None):
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
if mic_audio is not None:
sampling_rate, waveform = mic_audio
elif audio is not None:
sampling_rate, waveform = audio
else:
return "(please provide audio)"
waveform = process_audio(sampling_rate, waveform)
input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features, max_length=400)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
title = "Demo for Whisper -> Something -> XLS-R"
description = """
<b>How to use:</b> Upload an audio file or record using the microphone. The audio is converted to mono and resampled to 16 kHz before
being passed into the model. The output is the text transcription of the audio.
"""
gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Upload Speech", source="upload", type="numpy"),
gr.Audio(label="Record Speech", source="microphone", type="numpy"),
],
outputs=[
gr.Text(label="Transcription"),
],
title=title,
article=article,
).launch()