Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,15 @@ import os
|
|
2 |
import sys
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import spaces
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
from omegaconf import OmegaConf
|
9 |
-
import requests
|
10 |
-
from tqdm import tqdm
|
11 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def download_file(url, filename):
|
14 |
response = requests.get(url, stream=True)
|
@@ -45,38 +47,52 @@ def setup_environment():
|
|
45 |
|
46 |
setup_environment()
|
47 |
|
48 |
-
from
|
49 |
-
from
|
|
|
|
|
|
|
50 |
|
51 |
config = OmegaConf.load("configs/model/ccsr_stage2.yaml")
|
52 |
-
model = instantiate_from_config(config
|
53 |
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu")
|
54 |
-
|
55 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
@torch.inference_mode()
|
59 |
-
def infer(image, sr_scale, t_max, t_min, color_fix_type):
|
60 |
-
image = Image.open(image).convert("RGB").resize((256, 256), Image.LANCZOS)
|
61 |
-
image = torch.from_numpy(np.array(image)).float().cuda() / 127.5 - 1
|
62 |
-
image = image.permute(2, 0, 1).unsqueeze(0)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
interface = gr.Interface(
|
76 |
-
fn=
|
77 |
inputs=[
|
78 |
gr.Image(type="filepath"),
|
79 |
-
gr.Slider(minimum=1, maximum=
|
80 |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667),
|
81 |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333),
|
82 |
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"),
|
|
|
2 |
import sys
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
from omegaconf import OmegaConf
|
|
|
|
|
8 |
import subprocess
|
9 |
+
from tqdm import tqdm
|
10 |
+
import requests
|
11 |
+
|
12 |
+
# Assuming spaces is a valid module
|
13 |
+
import spaces
|
14 |
|
15 |
def download_file(url, filename):
|
16 |
response = requests.get(url, stream=True)
|
|
|
47 |
|
48 |
setup_environment()
|
49 |
|
50 |
+
# Importing from the CCSR folder
|
51 |
+
from CCSR.ldm.xformers_state import disable_xformers
|
52 |
+
from CCSR.model.q_sampler import SpacedSampler
|
53 |
+
from CCSR.model.ccsr_stage1 import ControlLDM
|
54 |
+
from CCSR.utils.common import instantiate_from_config, load_state_dict
|
55 |
|
56 |
config = OmegaConf.load("configs/model/ccsr_stage2.yaml")
|
57 |
+
model = instantiate_from_config(config)
|
58 |
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu")
|
59 |
+
load_state_dict(model, ckpt, strict=True)
|
60 |
+
model.freeze()
|
61 |
+
model.to("cuda")
|
62 |
+
|
63 |
+
@spaces.GPU # Decorate the inference function with @spaces.GPU
|
64 |
+
@torch.no_grad()
|
65 |
+
def process(image, steps, t_max, t_min, color_fix_type):
|
66 |
+
image = Image.open(image).convert("RGB")
|
67 |
+
image = image.resize((256, 256), Image.LANCZOS)
|
68 |
+
image = np.array(image)
|
69 |
+
|
70 |
+
sampler = SpacedSampler(model, var_type="fixed_small")
|
71 |
+
control = torch.tensor(np.stack([image]) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
|
72 |
+
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
|
73 |
|
74 |
+
model.control_scales = [1.0] * 13
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
height, width = control.size(-2), control.size(-1)
|
77 |
+
shape = (1, 4, height // 8, width // 8)
|
78 |
+
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
|
79 |
+
|
80 |
+
samples = sampler.sample_ccsr(
|
81 |
+
steps=steps, t_max=t_max, t_min=t_min, shape=shape, cond_img=control,
|
82 |
+
positive_prompt="", negative_prompt="", x_T=x_T,
|
83 |
+
cfg_scale=1.0, color_fix_type=color_fix_type
|
84 |
)
|
85 |
|
86 |
+
x_samples = samples.clamp(0, 1)
|
87 |
+
x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
|
88 |
+
|
89 |
+
return Image.fromarray(x_samples[0])
|
90 |
|
91 |
interface = gr.Interface(
|
92 |
+
fn=process,
|
93 |
inputs=[
|
94 |
gr.Image(type="filepath"),
|
95 |
+
gr.Slider(minimum=1, maximum=100, step=1, value=45),
|
96 |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667),
|
97 |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333),
|
98 |
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"),
|