Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import subprocess
|
|
9 |
from tqdm import tqdm
|
10 |
import requests
|
11 |
import spaces
|
|
|
12 |
|
13 |
def download_file(url, filename):
|
14 |
response = requests.get(url, stream=True)
|
@@ -60,7 +61,7 @@ model.to("cuda")
|
|
60 |
|
61 |
@spaces.GPU
|
62 |
@torch.no_grad()
|
63 |
-
def process(image, steps, t_max, t_min, color_fix_type):
|
64 |
image = Image.open(image).convert("RGB")
|
65 |
image = image.resize((256, 256), Image.LANCZOS)
|
66 |
image = np.array(image)
|
@@ -69,7 +70,7 @@ def process(image, steps, t_max, t_min, color_fix_type):
|
|
69 |
control = torch.tensor(np.stack([image]) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
|
70 |
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
|
71 |
|
72 |
-
model.control_scales = [
|
73 |
|
74 |
height, width = control.size(-2), control.size(-1)
|
75 |
shape = (1, 4, height // 8, width // 8)
|
@@ -89,13 +90,14 @@ def process(image, steps, t_max, t_min, color_fix_type):
|
|
89 |
interface = gr.Interface(
|
90 |
fn=process,
|
91 |
inputs=[
|
92 |
-
gr.Image(type="filepath"),
|
93 |
-
gr.Slider(minimum=1, maximum=100, step=1, value=45),
|
94 |
-
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667),
|
95 |
-
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333),
|
96 |
-
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"),
|
|
|
97 |
],
|
98 |
-
outputs=gr.Image(type="pil"),
|
99 |
title="CCSR: Continuous Contrastive Super-Resolution",
|
100 |
)
|
101 |
|
|
|
9 |
from tqdm import tqdm
|
10 |
import requests
|
11 |
import spaces
|
12 |
+
import einops # Import einops to fix the NameError
|
13 |
|
14 |
def download_file(url, filename):
|
15 |
response = requests.get(url, stream=True)
|
|
|
61 |
|
62 |
@spaces.GPU
|
63 |
@torch.no_grad()
|
64 |
+
def process(image, steps, t_max, t_min, color_fix_type, scale):
|
65 |
image = Image.open(image).convert("RGB")
|
66 |
image = image.resize((256, 256), Image.LANCZOS)
|
67 |
image = np.array(image)
|
|
|
70 |
control = torch.tensor(np.stack([image]) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
|
71 |
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
|
72 |
|
73 |
+
model.control_scales = [scale] * 13 # Use the scale parameter
|
74 |
|
75 |
height, width = control.size(-2), control.size(-1)
|
76 |
shape = (1, 4, height // 8, width // 8)
|
|
|
90 |
interface = gr.Interface(
|
91 |
fn=process,
|
92 |
inputs=[
|
93 |
+
gr.Image(type="filepath", label="Input Image"),
|
94 |
+
gr.Slider(minimum=1, maximum=100, step=1, value=45, label="Steps"),
|
95 |
+
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667, label="T Max"),
|
96 |
+
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333, label="T Min"),
|
97 |
+
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain", label="Color Fix Type"),
|
98 |
+
gr.Slider(minimum=0, maximum=2, step=0.01, value=1.0, label="Scale"),
|
99 |
],
|
100 |
+
outputs=gr.Image(type="pil", label="Output Image"),
|
101 |
title="CCSR: Continuous Contrastive Super-Resolution",
|
102 |
)
|
103 |
|