File size: 6,950 Bytes
04a30fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import pathlib
import shutil
from typing import Optional, List

from substra import Client, BackendType

from substra.sdk.schemas import (
    DatasetSpec,
    Permissions,
    DataSampleSpec
)

from substrafl.strategies import Strategy
from substrafl.dependency import Dependency
from substrafl.remote.register import add_metric
from substrafl.index_generator import NpIndexGenerator
from substrafl.algorithms.pytorch import TorchFedAvgAlgo

from substrafl.nodes import TrainDataNode, AggregationNode, TestDataNode
from substrafl.evaluation_strategy import EvaluationStrategy

from substrafl.experiment import execute_experiment
from substra.sdk.models import ComputePlan

from datasets import load_dataset, Dataset
from sklearn.metrics import accuracy_score
import numpy as np

import torch


class SubstraRunner:
    def __init__(self):
        self.num_clients = 3
        self.clients = {}
        self.algo_provider: Optional[Client] = None

        self.datasets: List[Dataset] = []
        self.test_dataset: Optional[Dataset] = None
        self.path = pathlib.Path(__file__).parent.resolve()

        self.dataset_keys = {}
        self.train_data_sample_keys = {}
        self.test_data_sample_keys = {}

        self.metric_key: Optional[str] = None

        NUM_UPDATES = 100
        BATCH_SIZE = 32

        self.index_generator = NpIndexGenerator(
            batch_size=BATCH_SIZE,
            num_updates=NUM_UPDATES,
        )

        self.algorithm: Optional[TorchFedAvgAlgo] = None
        self.strategy: Optional[Strategy] = None

        self.aggregation_node: Optional[AggregationNode] = None
        self.train_data_nodes = list()
        self.test_data_nodes = list()
        self.eval_strategy: Optional[EvaluationStrategy] = None

        self.NUM_ROUNDS = 3
        self.compute_plan: Optional[ComputePlan] = None

        self.experiment_folder = self.path / "experiment_summaries"

    def set_up_clients(self):
        self.algo_provider = Client(backend_type=BackendType.LOCAL_SUBPROCESS)

        self.clients = {
            c.organization_info().organization_id: c
            for c in [Client(backend_type=BackendType.LOCAL_SUBPROCESS) for _ in range(self.num_clients - 1)]
        }

    def prepare_data(self):
        dataset = load_dataset("mnist", split="train").shuffle()
        self.datasets = [dataset.shard(num_shards=self.num_clients - 1, index=i) for i in range(self.num_clients - 1)]

        self.test_dataset = load_dataset("mnist", split="test")

        data_path = self.path / "data"
        if data_path.exists() and data_path.is_dir():
            shutil.rmtree(data_path)

        for i, client_id in enumerate(self.clients):
            ds = self.datasets[i]
            ds.save_to_disk(data_path / client_id / "train")
            self.test_dataset.save_to_disk(data_path / client_id / "test")

    def register_data(self):
        for client_id, client in self.clients.items():
            permissions_dataset = Permissions(public=False, authorized_ids=[
                self.algo_provider.organization_info().organization_id
            ])

            dataset = DatasetSpec(
                name="MNIST",
                type="npy",
                data_opener=self.path / pathlib.Path("dataset_assets/opener.py"),
                description=self.path / pathlib.Path("dataset_assets/description.md"),
                permissions=permissions_dataset,
                logs_permission=permissions_dataset,
            )
            self.dataset_keys[client_id] = client.add_dataset(dataset)
            assert self.dataset_keys[client_id], "Missing dataset key"

            self.train_data_sample_keys[client_id] = client.add_data_sample(DataSampleSpec(
                data_manager_keys=[self.dataset_keys[client_id]],
                path=self.path / "data" / client_id / "train",
            ))

            data_sample = DataSampleSpec(
                data_manager_keys=[self.dataset_keys[client_id]],
                path=self.path / "data" / client_id / "test",
            )
            self.test_data_sample_keys[client_id] = client.add_data_sample(data_sample)

    def register_metric(self):
        permissions_metric = Permissions(
                                public=False,
                                authorized_ids=[
                                   self.algo_provider.organization_info().organization_id
                                ] + list(self.clients.keys())
                            )

        metric_deps = Dependency(pypi_dependencies=["numpy==1.23.1", "scikit-learn==1.1.1"])

        def accuracy(datasamples, predictions_path):
            y_true = datasamples["label"]
            y_pred = np.load(predictions_path)

            return accuracy_score(y_true, np.argmax(y_pred, axis=1))

        self.metric_key = add_metric(
            client=self.algo_provider,
            metric_function=accuracy,
            permissions=permissions_metric,
            dependencies=metric_deps,
        )

    def set_aggregation(self):
        self.aggregation_node = AggregationNode(self.algo_provider.organization_info().organization_id)

        for org_id in self.clients:
            train_data_node = TrainDataNode(
                organization_id=org_id,
                data_manager_key=self.dataset_keys[org_id],
                data_sample_keys=[self.train_data_sample_keys[org_id]],
            )
            self.train_data_nodes.append(train_data_node)

    def set_testing(self):
        for org_id in self.clients:
            test_data_node = TestDataNode(
                organization_id=org_id,
                data_manager_key=self.dataset_keys[org_id],
                test_data_sample_keys=[self.test_data_sample_keys[org_id]],
                metric_keys=[self.metric_key],
            )
            self.test_data_nodes.append(test_data_node)

        self.eval_strategy = EvaluationStrategy(test_data_nodes=self.test_data_nodes, rounds=1)

    def run_compute_plan(self):
        algo_deps = Dependency(pypi_dependencies=["numpy==1.23.1", "torch==1.11.0"])

        self.compute_plan = execute_experiment(
            client=self.algo_provider,
            algo=self.algorithm,
            strategy=self.strategy,
            train_data_nodes=self.train_data_nodes,
            evaluation_strategy=self.eval_strategy,
            aggregation_node=self.aggregation_node,
            num_rounds=self.NUM_ROUNDS,
            experiment_folder=self.experiment_folder,
            dependencies=algo_deps,
        )


def algo_generator(model, criterion, optimizer, index_generator, dataset, seed):
    class MyAlgo(TorchFedAvgAlgo):
        def __init__(self):
            super().__init__(
                model=model,
                criterion=criterion,
                optimizer=optimizer,
                index_generator=index_generator,
                dataset=dataset,
                seed=seed,
            )

    return MyAlgo