from torch import nn import torch.nn.functional as F # TODO: Would be cool to use a simple Transformer model... then I could use the Trainer API 👀 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 32, kernel_size=5) self.conv3 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(3 * 3 * 64, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x, eval=False): x = F.relu(self.conv1(x)) x = F.relu(F.max_pool2d(self.conv2(x), 2)) x = F.dropout(x, p=0.5, training=not eval) x = F.relu(F.max_pool2d(self.conv3(x), 2)) x = F.dropout(x, p=0.5, training=not eval) x = x.view(-1, 3 * 3 * 64) x = F.relu(self.fc1(x)) x = F.dropout(x, p=0.5, training=not eval) x = self.fc2(x) return F.log_softmax(x, dim=1)