Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import spaces
|
4 |
import torch
|
5 |
from transformers import pipeline, WhisperTokenizer
|
|
|
6 |
import gradio as gr
|
7 |
# Please note that the below import will override whisper LANGUAGES to add bambara
|
8 |
# this is not the best way to do it but at least it works. for more info check the bambara_utils code
|
@@ -26,6 +27,25 @@ tokenizer = WhisperTokenizer.from_pretrained(model_checkpoint, language=language
|
|
26 |
pipe = pipeline(model=model_checkpoint, tokenizer=tokenizer, device=device, revision=revision)
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@spaces.GPU()
|
30 |
def transcribe(audio):
|
31 |
"""
|
@@ -37,8 +57,12 @@ def transcribe(audio):
|
|
37 |
Returns:
|
38 |
A string representing the transcribed text.
|
39 |
"""
|
|
|
|
|
|
|
40 |
# Use the pipeline to perform transcription
|
41 |
-
text = pipe(
|
|
|
42 |
return text
|
43 |
|
44 |
def get_wav_files(directory):
|
|
|
3 |
import spaces
|
4 |
import torch
|
5 |
from transformers import pipeline, WhisperTokenizer
|
6 |
+
import torchaudio
|
7 |
import gradio as gr
|
8 |
# Please note that the below import will override whisper LANGUAGES to add bambara
|
9 |
# this is not the best way to do it but at least it works. for more info check the bambara_utils code
|
|
|
27 |
pipe = pipeline(model=model_checkpoint, tokenizer=tokenizer, device=device, revision=revision)
|
28 |
|
29 |
|
30 |
+
def resample_audio(audio_path, target_sample_rate=16000):
|
31 |
+
"""
|
32 |
+
Converts the audio file to the target sampling rate (16000 Hz).
|
33 |
+
|
34 |
+
Args:
|
35 |
+
audio_path (str): Path to the audio file.
|
36 |
+
target_sample_rate (int): The desired sample rate.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
A tensor containing the resampled audio data and the target sample rate.
|
40 |
+
"""
|
41 |
+
waveform, original_sample_rate = torchaudio.load(audio_path)
|
42 |
+
|
43 |
+
if original_sample_rate != target_sample_rate:
|
44 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=target_sample_rate)
|
45 |
+
waveform = resampler(waveform)
|
46 |
+
|
47 |
+
return waveform, target_sample_rate
|
48 |
+
|
49 |
@spaces.GPU()
|
50 |
def transcribe(audio):
|
51 |
"""
|
|
|
57 |
Returns:
|
58 |
A string representing the transcribed text.
|
59 |
"""
|
60 |
+
# Convert the audio to 16000 Hz
|
61 |
+
waveform, sample_rate = resample_audio(audio)
|
62 |
+
|
63 |
# Use the pipeline to perform transcription
|
64 |
+
text = pipe({"array": waveform.squeeze().numpy(), "sampling_rate": sample_rate})["text"]
|
65 |
+
|
66 |
return text
|
67 |
|
68 |
def get_wav_files(directory):
|