oza75 commited on
Commit
964c1a5
·
verified ·
1 Parent(s): 4adc8b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -13,7 +13,7 @@ from bambara_utils import BambaraWhisperTokenizer
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
 
15
  # Define the model checkpoint and language
16
- # model_checkpoint = "oza75/whisper-bambara-asr-002"
17
  # revision = "831cd15ed74a554caac9f304cf50dc773841ba1b"
18
  # model_checkpoint = "oza75/whisper-bambara-asr-005"
19
  # revision = "6a92cd0f19985d12739c2f6864607627115e015d" # first good checkpoint for bambara
@@ -27,12 +27,15 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
27
  #revision = "96535debb4ce0b7af7c9c186d09d088825f63840"
28
  #revision = "4549778c08f29ed2e033cc9a497a187488b6bf56"
29
 
30
- model_checkpoint = "oza75/bm-whisper-02"
31
- revision = "06e81aa0214f6d07d3d787b367e3e8357b171549"
32
 
33
  # language = "bambara"
34
- language = "icelandic" # we use icelandic as the model was trained to replace the icelandic with bambara.
35
 
 
 
 
36
 
37
  # Load the custom tokenizer designed for Bambara and the ASR model
38
  #tokenizer = BambaraWhisperTokenizer.from_pretrained(model_checkpoint, language=language, device=device)
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
 
15
  # Define the model checkpoint and language
16
+ # model_checkpoint = "oza75/whisper-bambara-asr-002" # first model
17
  # revision = "831cd15ed74a554caac9f304cf50dc773841ba1b"
18
  # model_checkpoint = "oza75/whisper-bambara-asr-005"
19
  # revision = "6a92cd0f19985d12739c2f6864607627115e015d" # first good checkpoint for bambara
 
27
  #revision = "96535debb4ce0b7af7c9c186d09d088825f63840"
28
  #revision = "4549778c08f29ed2e033cc9a497a187488b6bf56"
29
 
30
+ # model_checkpoint = "oza75/bm-whisper-02"
31
+ # revision = "06e81aa0214f6d07d3d787b367e3e8357b171549"
32
 
33
  # language = "bambara"
34
+ # language = "icelandic" # we use icelandic as the model was trained to replace the icelandic with bambara.
35
 
36
+ model_checkpoint = "oza75/bm-whisper-from-swa-02"
37
+ revision = None
38
+ language = "swahili"
39
 
40
  # Load the custom tokenizer designed for Bambara and the ASR model
41
  #tokenizer = BambaraWhisperTokenizer.from_pretrained(model_checkpoint, language=language, device=device)