Aboubacar OUATTARA - kaira commited on
Commit
a8b8b2c
·
1 Parent(s): b17f58c

add audios files

Browse files
Files changed (2) hide show
  1. app.py +11 -3
  2. tts.py +1 -1
app.py CHANGED
@@ -70,11 +70,19 @@ def enhance_speech(audio_array, sampling_rate, solver, nfe, tau, denoise_before_
70
 
71
  @spaces.GPU(duration=360)
72
  def denoise_audio():
73
- return denoise(audio_array, sampling_rate, device)
 
 
 
 
74
 
75
  @spaces.GPU(duration=360)
76
  def enhance_audio():
77
- return enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
 
 
 
 
78
 
79
  with concurrent.futures.ThreadPoolExecutor() as executor:
80
  future_denoise = executor.submit(denoise_audio)
@@ -119,7 +127,7 @@ def _fn(
119
  )
120
 
121
  # Return all outputs
122
- return bambara_text, (sampling_rate, audio_array.cpu().numpy()), denoised_audio, enhanced_audio
123
 
124
 
125
  def main():
 
70
 
71
  @spaces.GPU(duration=360)
72
  def denoise_audio():
73
+ try:
74
+ return denoise(audio_array, sampling_rate, device)
75
+ except Exception as e:
76
+ print("> Error while denoising : ", str(e))
77
+ return audio_array, sampling_rate
78
 
79
  @spaces.GPU(duration=360)
80
  def enhance_audio():
81
+ try:
82
+ return enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
83
+ except Exception as e:
84
+ print("> Error while enhancement : ", str(e))
85
+ return audio_array, sampling_rate
86
 
87
  with concurrent.futures.ThreadPoolExecutor() as executor:
88
  future_denoise = executor.submit(denoise_audio)
 
127
  )
128
 
129
  # Return all outputs
130
+ return bambara_text, (sampling_rate, audio_array.numpy()), denoised_audio, enhanced_audio
131
 
132
 
133
  def main():
tts.py CHANGED
@@ -373,7 +373,7 @@ class BambaraTTS:
373
  )
374
  end_time = time.time()
375
 
376
- audio = torch.tensor(out["wav"]).unsqueeze(0)
377
  sampling_rate = self.config.model_args.output_sample_rate
378
 
379
  self.log(f"Speech generated in {end_time - start_time:.2f} seconds.")
 
373
  )
374
  end_time = time.time()
375
 
376
+ audio = torch.tensor(out["wav"]).unsqueeze(0).cpu()
377
  sampling_rate = self.config.model_args.output_sample_rate
378
 
379
  self.log(f"Speech generated in {end_time - start_time:.2f} seconds.")