Spaces:
Runtime error
Runtime error
ozayezerceli
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
|
|
|
|
6 |
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
@@ -18,6 +20,8 @@ from src.display.utils import (
|
|
18 |
COLS,
|
19 |
EVAL_COLS,
|
20 |
EVAL_TYPES,
|
|
|
|
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
fields,
|
@@ -30,26 +34,27 @@ from src.submission.submit import add_new_eval
|
|
30 |
|
31 |
|
32 |
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
### Space initialisation
|
36 |
try:
|
37 |
print(EVAL_REQUESTS_PATH)
|
38 |
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
40 |
)
|
41 |
except Exception:
|
42 |
restart_space()
|
43 |
try:
|
44 |
print(EVAL_RESULTS_PATH)
|
45 |
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
47 |
)
|
48 |
except Exception:
|
49 |
restart_space()
|
50 |
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
(
|
55 |
finished_eval_queue_df,
|
@@ -57,36 +62,76 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
57 |
pending_eval_queue_df,
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
demo = gr.Blocks(css=custom_css)
|
@@ -96,7 +141,107 @@ with demo:
|
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
@@ -198,6 +343,9 @@ with demo:
|
|
198 |
show_copy_button=True,
|
199 |
)
|
200 |
|
|
|
|
|
|
|
201 |
scheduler = BackgroundScheduler()
|
202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
|
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
6 |
+
import os
|
7 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
8 |
|
9 |
from src.about import (
|
10 |
CITATION_BUTTON_LABEL,
|
|
|
20 |
COLS,
|
21 |
EVAL_COLS,
|
22 |
EVAL_TYPES,
|
23 |
+
NUMERIC_INTERVALS,
|
24 |
+
TYPES,
|
25 |
AutoEvalColumn,
|
26 |
ModelType,
|
27 |
fields,
|
|
|
34 |
|
35 |
|
36 |
def restart_space():
|
37 |
+
API.restart_space(repo_id=REPO_ID,token=TOKEN)
|
38 |
|
39 |
### Space initialisation
|
40 |
try:
|
41 |
print(EVAL_REQUESTS_PATH)
|
42 |
snapshot_download(
|
43 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
44 |
)
|
45 |
except Exception:
|
46 |
restart_space()
|
47 |
try:
|
48 |
print(EVAL_RESULTS_PATH)
|
49 |
snapshot_download(
|
50 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
51 |
)
|
52 |
except Exception:
|
53 |
restart_space()
|
54 |
|
55 |
|
56 |
+
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
57 |
+
leaderboard_df = original_df.copy()
|
58 |
|
59 |
(
|
60 |
finished_eval_queue_df,
|
|
|
62 |
pending_eval_queue_df,
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
+
# Searching and filtering
|
66 |
+
def update_table(
|
67 |
+
hidden_df: pd.DataFrame,
|
68 |
+
columns: list,
|
69 |
+
type_query: list,
|
70 |
+
precision_query: str,
|
71 |
+
size_query: list,
|
72 |
+
show_deleted: bool,
|
73 |
+
query: str,
|
74 |
+
):
|
75 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
76 |
+
filtered_df = filter_queries(query, filtered_df)
|
77 |
+
df = select_columns(filtered_df, columns)
|
78 |
+
return df
|
79 |
+
|
80 |
+
|
81 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
82 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
83 |
+
|
84 |
+
|
85 |
+
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
86 |
+
always_here_cols = [
|
87 |
+
AutoEvalColumn.model_type_symbol.name,
|
88 |
+
AutoEvalColumn.model.name,
|
89 |
+
]
|
90 |
+
# We use COLS to maintain sorting
|
91 |
+
filtered_df = df[
|
92 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
|
93 |
+
]
|
94 |
+
return filtered_df
|
95 |
+
|
96 |
+
|
97 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
98 |
+
final_df = []
|
99 |
+
if query != "":
|
100 |
+
queries = [q.strip() for q in query.split(";")]
|
101 |
+
for _q in queries:
|
102 |
+
_q = _q.strip()
|
103 |
+
if _q != "":
|
104 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
105 |
+
if len(temp_filtered_df) > 0:
|
106 |
+
final_df.append(temp_filtered_df)
|
107 |
+
if len(final_df) > 0:
|
108 |
+
filtered_df = pd.concat(final_df)
|
109 |
+
filtered_df = filtered_df.drop_duplicates(
|
110 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
111 |
+
)
|
112 |
+
|
113 |
+
return filtered_df
|
114 |
+
|
115 |
+
|
116 |
+
def filter_models(
|
117 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
118 |
+
) -> pd.DataFrame:
|
119 |
+
# Show all models
|
120 |
+
if show_deleted:
|
121 |
+
filtered_df = df
|
122 |
+
else: # Show only still on the hub models
|
123 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
124 |
+
|
125 |
+
type_emoji = [t[0] for t in type_query]
|
126 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
127 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
128 |
+
|
129 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
130 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
131 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
132 |
+
filtered_df = filtered_df.loc[mask]
|
133 |
+
|
134 |
+
return filtered_df
|
135 |
|
136 |
|
137 |
demo = gr.Blocks(css=custom_css)
|
|
|
141 |
|
142 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
143 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column():
|
146 |
+
with gr.Row():
|
147 |
+
search_bar = gr.Textbox(
|
148 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
149 |
+
show_label=False,
|
150 |
+
elem_id="search-bar",
|
151 |
+
)
|
152 |
+
with gr.Row():
|
153 |
+
shown_columns = gr.CheckboxGroup(
|
154 |
+
choices=[
|
155 |
+
c.name
|
156 |
+
for c in fields(AutoEvalColumn)
|
157 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
158 |
+
],
|
159 |
+
value=[
|
160 |
+
c.name
|
161 |
+
for c in fields(AutoEvalColumn)
|
162 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
163 |
+
],
|
164 |
+
label="Select columns to show",
|
165 |
+
elem_id="column-select",
|
166 |
+
interactive=True,
|
167 |
+
)
|
168 |
+
with gr.Row():
|
169 |
+
deleted_models_visibility = gr.Checkbox(
|
170 |
+
value=False, label="Show gated/private/deleted models", interactive=True
|
171 |
+
)
|
172 |
+
with gr.Column(min_width=320):
|
173 |
+
#with gr.Box(elem_id="box-filter"):
|
174 |
+
filter_columns_type = gr.CheckboxGroup(
|
175 |
+
label="Model types",
|
176 |
+
choices=[t.to_str() for t in ModelType],
|
177 |
+
value=[t.to_str() for t in ModelType],
|
178 |
+
interactive=True,
|
179 |
+
elem_id="filter-columns-type",
|
180 |
+
)
|
181 |
+
filter_columns_precision = gr.CheckboxGroup(
|
182 |
+
label="Precision",
|
183 |
+
choices=[i.value.name for i in Precision],
|
184 |
+
value=[i.value.name for i in Precision],
|
185 |
+
interactive=True,
|
186 |
+
elem_id="filter-columns-precision",
|
187 |
+
)
|
188 |
+
filter_columns_size = gr.CheckboxGroup(
|
189 |
+
label="Model sizes (in billions of parameters)",
|
190 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
191 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
192 |
+
interactive=True,
|
193 |
+
elem_id="filter-columns-size",
|
194 |
+
)
|
195 |
+
|
196 |
+
leaderboard_table = gr.components.Dataframe(
|
197 |
+
value=leaderboard_df[
|
198 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
199 |
+
+ shown_columns.value
|
200 |
+
+ [AutoEvalColumn.dummy.name]
|
201 |
+
],
|
202 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
203 |
+
datatype=TYPES,
|
204 |
+
elem_id="leaderboard-table",
|
205 |
+
interactive=False,
|
206 |
+
visible=True,
|
207 |
+
column_widths=["2%", "33%"]
|
208 |
+
)
|
209 |
+
|
210 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
211 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
212 |
+
value=original_df[COLS],
|
213 |
+
headers=COLS,
|
214 |
+
datatype=TYPES,
|
215 |
+
visible=False,
|
216 |
+
)
|
217 |
+
search_bar.submit(
|
218 |
+
update_table,
|
219 |
+
[
|
220 |
+
hidden_leaderboard_table_for_search,
|
221 |
+
shown_columns,
|
222 |
+
filter_columns_type,
|
223 |
+
filter_columns_precision,
|
224 |
+
filter_columns_size,
|
225 |
+
deleted_models_visibility,
|
226 |
+
search_bar,
|
227 |
+
],
|
228 |
+
leaderboard_table,
|
229 |
+
)
|
230 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
231 |
+
selector.change(
|
232 |
+
update_table,
|
233 |
+
[
|
234 |
+
hidden_leaderboard_table_for_search,
|
235 |
+
shown_columns,
|
236 |
+
filter_columns_type,
|
237 |
+
filter_columns_precision,
|
238 |
+
filter_columns_size,
|
239 |
+
deleted_models_visibility,
|
240 |
+
search_bar,
|
241 |
+
],
|
242 |
+
leaderboard_table,
|
243 |
+
queue=True,
|
244 |
+
)
|
245 |
|
246 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
247 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
343 |
show_copy_button=True,
|
344 |
)
|
345 |
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
scheduler = BackgroundScheduler()
|
350 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
351 |
scheduler.start()
|