Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from annotator.mmpkg.mmseg.core import add_prefix | |
from annotator.mmpkg.mmseg.ops import resize | |
from .. import builder | |
from ..builder import SEGMENTORS | |
from .base import BaseSegmentor | |
class EncoderDecoder(BaseSegmentor): | |
"""Encoder Decoder segmentors. | |
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. | |
Note that auxiliary_head is only used for deep supervision during training, | |
which could be dumped during inference. | |
""" | |
def __init__(self, | |
backbone, | |
decode_head, | |
neck=None, | |
auxiliary_head=None, | |
train_cfg=None, | |
test_cfg=None, | |
pretrained=None): | |
super(EncoderDecoder, self).__init__() | |
self.backbone = builder.build_backbone(backbone) | |
if neck is not None: | |
self.neck = builder.build_neck(neck) | |
self._init_decode_head(decode_head) | |
self._init_auxiliary_head(auxiliary_head) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.init_weights(pretrained=pretrained) | |
assert self.with_decode_head | |
def _init_decode_head(self, decode_head): | |
"""Initialize ``decode_head``""" | |
self.decode_head = builder.build_head(decode_head) | |
self.align_corners = self.decode_head.align_corners | |
self.num_classes = self.decode_head.num_classes | |
def _init_auxiliary_head(self, auxiliary_head): | |
"""Initialize ``auxiliary_head``""" | |
if auxiliary_head is not None: | |
if isinstance(auxiliary_head, list): | |
self.auxiliary_head = nn.ModuleList() | |
for head_cfg in auxiliary_head: | |
self.auxiliary_head.append(builder.build_head(head_cfg)) | |
else: | |
self.auxiliary_head = builder.build_head(auxiliary_head) | |
def init_weights(self, pretrained=None): | |
"""Initialize the weights in backbone and heads. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
super(EncoderDecoder, self).init_weights(pretrained) | |
self.backbone.init_weights(pretrained=pretrained) | |
self.decode_head.init_weights() | |
if self.with_auxiliary_head: | |
if isinstance(self.auxiliary_head, nn.ModuleList): | |
for aux_head in self.auxiliary_head: | |
aux_head.init_weights() | |
else: | |
self.auxiliary_head.init_weights() | |
def extract_feat(self, img): | |
"""Extract features from images.""" | |
x = self.backbone(img) | |
if self.with_neck: | |
x = self.neck(x) | |
return x | |
def encode_decode(self, img, img_metas): | |
"""Encode images with backbone and decode into a semantic segmentation | |
map of the same size as input.""" | |
x = self.extract_feat(img) | |
out = self._decode_head_forward_test(x, img_metas) | |
out = resize( | |
input=out, | |
size=img.shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
return out | |
def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): | |
"""Run forward function and calculate loss for decode head in | |
training.""" | |
losses = dict() | |
loss_decode = self.decode_head.forward_train(x, img_metas, | |
gt_semantic_seg, | |
self.train_cfg) | |
losses.update(add_prefix(loss_decode, 'decode')) | |
return losses | |
def _decode_head_forward_test(self, x, img_metas): | |
"""Run forward function and calculate loss for decode head in | |
inference.""" | |
seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) | |
return seg_logits | |
def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): | |
"""Run forward function and calculate loss for auxiliary head in | |
training.""" | |
losses = dict() | |
if isinstance(self.auxiliary_head, nn.ModuleList): | |
for idx, aux_head in enumerate(self.auxiliary_head): | |
loss_aux = aux_head.forward_train(x, img_metas, | |
gt_semantic_seg, | |
self.train_cfg) | |
losses.update(add_prefix(loss_aux, f'aux_{idx}')) | |
else: | |
loss_aux = self.auxiliary_head.forward_train( | |
x, img_metas, gt_semantic_seg, self.train_cfg) | |
losses.update(add_prefix(loss_aux, 'aux')) | |
return losses | |
def forward_dummy(self, img): | |
"""Dummy forward function.""" | |
seg_logit = self.encode_decode(img, None) | |
return seg_logit | |
def forward_train(self, img, img_metas, gt_semantic_seg): | |
"""Forward function for training. | |
Args: | |
img (Tensor): Input images. | |
img_metas (list[dict]): List of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmseg/datasets/pipelines/formatting.py:Collect`. | |
gt_semantic_seg (Tensor): Semantic segmentation masks | |
used if the architecture supports semantic segmentation task. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
x = self.extract_feat(img) | |
losses = dict() | |
loss_decode = self._decode_head_forward_train(x, img_metas, | |
gt_semantic_seg) | |
losses.update(loss_decode) | |
if self.with_auxiliary_head: | |
loss_aux = self._auxiliary_head_forward_train( | |
x, img_metas, gt_semantic_seg) | |
losses.update(loss_aux) | |
return losses | |
# TODO refactor | |
def slide_inference(self, img, img_meta, rescale): | |
"""Inference by sliding-window with overlap. | |
If h_crop > h_img or w_crop > w_img, the small patch will be used to | |
decode without padding. | |
""" | |
h_stride, w_stride = self.test_cfg.stride | |
h_crop, w_crop = self.test_cfg.crop_size | |
batch_size, _, h_img, w_img = img.size() | |
num_classes = self.num_classes | |
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 | |
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 | |
preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) | |
count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) | |
for h_idx in range(h_grids): | |
for w_idx in range(w_grids): | |
y1 = h_idx * h_stride | |
x1 = w_idx * w_stride | |
y2 = min(y1 + h_crop, h_img) | |
x2 = min(x1 + w_crop, w_img) | |
y1 = max(y2 - h_crop, 0) | |
x1 = max(x2 - w_crop, 0) | |
crop_img = img[:, :, y1:y2, x1:x2] | |
crop_seg_logit = self.encode_decode(crop_img, img_meta) | |
preds += F.pad(crop_seg_logit, | |
(int(x1), int(preds.shape[3] - x2), int(y1), | |
int(preds.shape[2] - y2))) | |
count_mat[:, :, y1:y2, x1:x2] += 1 | |
assert (count_mat == 0).sum() == 0 | |
if torch.onnx.is_in_onnx_export(): | |
# cast count_mat to constant while exporting to ONNX | |
count_mat = torch.from_numpy( | |
count_mat.cpu().detach().numpy()).to(device=img.device) | |
preds = preds / count_mat | |
if rescale: | |
preds = resize( | |
preds, | |
size=img_meta[0]['ori_shape'][:2], | |
mode='bilinear', | |
align_corners=self.align_corners, | |
warning=False) | |
return preds | |
def whole_inference(self, img, img_meta, rescale): | |
"""Inference with full image.""" | |
seg_logit = self.encode_decode(img, img_meta) | |
if rescale: | |
# support dynamic shape for onnx | |
if torch.onnx.is_in_onnx_export(): | |
size = img.shape[2:] | |
else: | |
size = img_meta[0]['ori_shape'][:2] | |
seg_logit = resize( | |
seg_logit, | |
size=size, | |
mode='bilinear', | |
align_corners=self.align_corners, | |
warning=False) | |
return seg_logit | |
def inference(self, img, img_meta, rescale): | |
"""Inference with slide/whole style. | |
Args: | |
img (Tensor): The input image of shape (N, 3, H, W). | |
img_meta (dict): Image info dict where each dict has: 'img_shape', | |
'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmseg/datasets/pipelines/formatting.py:Collect`. | |
rescale (bool): Whether rescale back to original shape. | |
Returns: | |
Tensor: The output segmentation map. | |
""" | |
assert self.test_cfg.mode in ['slide', 'whole'] | |
ori_shape = img_meta[0]['ori_shape'] | |
assert all(_['ori_shape'] == ori_shape for _ in img_meta) | |
if self.test_cfg.mode == 'slide': | |
seg_logit = self.slide_inference(img, img_meta, rescale) | |
else: | |
seg_logit = self.whole_inference(img, img_meta, rescale) | |
output = F.softmax(seg_logit, dim=1) | |
flip = img_meta[0]['flip'] | |
if flip: | |
flip_direction = img_meta[0]['flip_direction'] | |
assert flip_direction in ['horizontal', 'vertical'] | |
if flip_direction == 'horizontal': | |
output = output.flip(dims=(3, )) | |
elif flip_direction == 'vertical': | |
output = output.flip(dims=(2, )) | |
return output | |
def simple_test(self, img, img_meta, rescale=True): | |
"""Simple test with single image.""" | |
seg_logit = self.inference(img, img_meta, rescale) | |
seg_pred = seg_logit.argmax(dim=1) | |
if torch.onnx.is_in_onnx_export(): | |
# our inference backend only support 4D output | |
seg_pred = seg_pred.unsqueeze(0) | |
return seg_pred | |
seg_pred = seg_pred.cpu().numpy() | |
# unravel batch dim | |
seg_pred = list(seg_pred) | |
return seg_pred | |
def aug_test(self, imgs, img_metas, rescale=True): | |
"""Test with augmentations. | |
Only rescale=True is supported. | |
""" | |
# aug_test rescale all imgs back to ori_shape for now | |
assert rescale | |
# to save memory, we get augmented seg logit inplace | |
seg_logit = self.inference(imgs[0], img_metas[0], rescale) | |
for i in range(1, len(imgs)): | |
cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) | |
seg_logit += cur_seg_logit | |
seg_logit /= len(imgs) | |
seg_pred = seg_logit.argmax(dim=1) | |
seg_pred = seg_pred.cpu().numpy() | |
# unravel batch dim | |
seg_pred = list(seg_pred) | |
return seg_pred | |