Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,180 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import gc
|
5 |
+
from typing import Optional
|
6 |
|
7 |
+
# Check if we're running on Hugging Face Spaces
|
8 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
9 |
+
|
10 |
+
def check_gpu_memory():
|
11 |
+
"""Check available GPU memory"""
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
return torch.cuda.get_device_properties(0).total_memory / 1024**3
|
14 |
+
return 0
|
15 |
+
|
16 |
+
def load_model():
|
17 |
+
"""Load the HunyuanVideo model with error handling"""
|
18 |
+
try:
|
19 |
+
# For Hugging Face Spaces, we need to be careful with memory
|
20 |
+
if IS_SPACES:
|
21 |
+
print("Running on Hugging Face Spaces")
|
22 |
+
gpu_memory = check_gpu_memory()
|
23 |
+
print(f"Available GPU memory: {gpu_memory:.1f} GB")
|
24 |
+
|
25 |
+
# Try to load the model
|
26 |
+
from transformers import AutoModel, AutoTokenizer
|
27 |
+
|
28 |
+
model_name = "tencent/HunyuanVideo"
|
29 |
+
|
30 |
+
# Use CPU if no GPU or limited memory
|
31 |
+
device = "cuda" if torch.cuda.is_available() and check_gpu_memory() > 8 else "cpu"
|
32 |
+
print(f"Using device: {device}")
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
+
|
36 |
+
# Load model with appropriate settings for Spaces
|
37 |
+
model = AutoModel.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
40 |
+
device_map="auto" if device == "cuda" else None,
|
41 |
+
low_cpu_mem_usage=True
|
42 |
+
)
|
43 |
+
|
44 |
+
return model, tokenizer, device
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error loading model: {e}")
|
48 |
+
return None, None, "cpu"
|
49 |
+
|
50 |
+
# Initialize model
|
51 |
+
MODEL, TOKENIZER, DEVICE = load_model()
|
52 |
+
|
53 |
+
def generate_video(prompt: str, duration: int = 5, resolution: str = "512x512") -> str:
|
54 |
+
"""Generate video from text prompt"""
|
55 |
+
|
56 |
+
if MODEL is None:
|
57 |
+
return "β Model not loaded. This might be due to memory limitations on Hugging Face Spaces."
|
58 |
+
|
59 |
+
try:
|
60 |
+
# Clear GPU cache if using CUDA
|
61 |
+
if DEVICE == "cuda":
|
62 |
+
torch.cuda.empty_cache()
|
63 |
+
gc.collect()
|
64 |
+
|
65 |
+
# Parse resolution
|
66 |
+
width, height = map(int, resolution.split('x'))
|
67 |
+
|
68 |
+
# Basic validation
|
69 |
+
if not prompt.strip():
|
70 |
+
return "β Please enter a valid prompt."
|
71 |
+
|
72 |
+
if duration < 1 or duration > 10:
|
73 |
+
return "β Duration must be between 1-10 seconds."
|
74 |
+
|
75 |
+
# This is where you would implement the actual video generation
|
76 |
+
# For now, return a placeholder message
|
77 |
+
return f"""
|
78 |
+
β
Video generation request processed:
|
79 |
+
|
80 |
+
π Prompt: {prompt}
|
81 |
+
β±οΈ Duration: {duration} seconds
|
82 |
+
π Resolution: {resolution}
|
83 |
+
π₯οΈ Device: {DEVICE}
|
84 |
+
|
85 |
+
Note: Actual video generation implementation needed.
|
86 |
+
The model is loaded and ready for inference.
|
87 |
+
"""
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return f"β Error during generation: {str(e)}"
|
91 |
+
|
92 |
+
def get_system_info():
|
93 |
+
"""Get system information for debugging"""
|
94 |
+
info = f"""
|
95 |
+
π₯οΈ **System Information:**
|
96 |
+
- Python: {os.sys.version.split()[0]}
|
97 |
+
- PyTorch: {torch.__version__}
|
98 |
+
- CUDA Available: {torch.cuda.is_available()}
|
99 |
+
- GPU Memory: {check_gpu_memory():.1f} GB
|
100 |
+
- Running on Spaces: {IS_SPACES}
|
101 |
+
- Device: {DEVICE}
|
102 |
+
- Model Loaded: {'β
' if MODEL is not None else 'β'}
|
103 |
+
"""
|
104 |
+
return info
|
105 |
+
|
106 |
+
# Create Gradio interface
|
107 |
+
with gr.Blocks(title="HunyuanVideo Generator", theme=gr.themes.Soft()) as demo:
|
108 |
+
|
109 |
+
gr.Markdown("# π¬ HunyuanVideo Text-to-Video Generator")
|
110 |
+
gr.Markdown("Generate videos from text descriptions using the HunyuanVideo model.")
|
111 |
+
|
112 |
+
with gr.Tab("Generate Video"):
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=1):
|
115 |
+
prompt_input = gr.Textbox(
|
116 |
+
label="π Video Description",
|
117 |
+
placeholder="A cat playing with a ball of yarn in a sunny garden...",
|
118 |
+
lines=3,
|
119 |
+
max_lines=5
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
duration_slider = gr.Slider(
|
124 |
+
minimum=1,
|
125 |
+
maximum=10,
|
126 |
+
value=5,
|
127 |
+
step=1,
|
128 |
+
label="β±οΈ Duration (seconds)"
|
129 |
+
)
|
130 |
+
|
131 |
+
resolution_dropdown = gr.Dropdown(
|
132 |
+
choices=["256x256", "512x512", "768x768", "1024x1024"],
|
133 |
+
value="512x512",
|
134 |
+
label="π Resolution"
|
135 |
+
)
|
136 |
+
|
137 |
+
generate_btn = gr.Button("π¬ Generate Video", variant="primary", size="lg")
|
138 |
+
|
139 |
+
with gr.Column(scale=1):
|
140 |
+
output_text = gr.Textbox(
|
141 |
+
label="π Output",
|
142 |
+
lines=10,
|
143 |
+
show_copy_button=True
|
144 |
+
)
|
145 |
+
|
146 |
+
# Event handler
|
147 |
+
generate_btn.click(
|
148 |
+
fn=generate_video,
|
149 |
+
inputs=[prompt_input, duration_slider, resolution_dropdown],
|
150 |
+
outputs=output_text
|
151 |
+
)
|
152 |
+
|
153 |
+
# Example prompts
|
154 |
+
gr.Examples(
|
155 |
+
examples=[
|
156 |
+
["A beautiful sunset over a calm ocean with gentle waves", 5, "512x512"],
|
157 |
+
["A cat gracefully jumping between rooftops in a medieval town", 7, "768x768"],
|
158 |
+
["Cherry blossoms falling in a Japanese garden", 4, "512x512"],
|
159 |
+
["A spacecraft flying through a colorful nebula", 8, "1024x1024"]
|
160 |
+
],
|
161 |
+
inputs=[prompt_input, duration_slider, resolution_dropdown]
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Tab("System Info"):
|
165 |
+
info_button = gr.Button("π Check System Info")
|
166 |
+
info_output = gr.Markdown()
|
167 |
+
|
168 |
+
info_button.click(
|
169 |
+
fn=get_system_info,
|
170 |
+
outputs=info_output
|
171 |
+
)
|
172 |
+
|
173 |
+
# Launch the app
|
174 |
+
if __name__ == "__main__":
|
175 |
+
demo.launch(
|
176 |
+
share=False, # Hugging Face Spaces handles sharing
|
177 |
+
server_name="0.0.0.0", # Important for Spaces
|
178 |
+
server_port=7860, # Default port for Spaces
|
179 |
+
show_error=True
|
180 |
+
)
|