File size: 5,921 Bytes
e437acb
 
 
9067733
03d287b
ddadf19
9067733
 
 
03d287b
9067733
ddadf19
 
 
 
 
 
e437acb
 
 
 
ddadf19
 
 
 
9067733
e437acb
 
9067733
e437acb
 
9067733
03d287b
 
 
 
 
9067733
 
 
 
 
 
 
03d287b
9067733
 
e437acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9067733
 
 
 
 
 
 
 
 
 
 
 
e437acb
03d287b
9067733
ddadf19
 
 
 
 
 
 
 
 
 
 
 
 
03d287b
 
e437acb
 
 
ddadf19
 
 
 
 
 
 
e437acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddadf19
 
 
e437acb
ddadf19
 
03d287b
ddadf19
9067733
 
 
 
 
 
03d287b
 
9067733
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import subprocess
subprocess.run(["sh", "tddfa/build.sh"]) 

import gradio as gr
from gradio.components import Dropdown

import cv2 as cv
import torch
from torchvision import transforms
from DeePixBiS.Model import DeePixBiS

import yaml
import numpy as np
import pandas as pd
from skimage.io import imread, imsave
# from tddfa.TDDFA import TDDFA
from tddfa.utils.depth import depth
from tddfa.TDDFA import TDDFA

import torch.optim as optim
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u

import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'


device = torch.device("cpu")
labels = ['Live', 'Spoof']
pix_threshhold = 0.45
dsdg_threshold = 0.003
examples = [
    ['examples/1_1_21_2_33_scene_fake.jpg', "DeePixBiS"],
    ['examples/frame150_real.jpg', "DeePixBiS"],
    ['examples/1_2.avi_125_real.jpg', "DeePixBiS"],
    ['examples/1_3.avi_25_fake.jpg', "DeePixBiS"]]
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
tfms = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
model = DeePixBiS(pretrained=False)
model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth'))
model.eval()


depth_config_path = 'tddfa/configs/mb05_120x120.yml'  # 'tddfa/configs/mb1_120x120.yml
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
tddfa = TDDFA(gpu_mode=False, **cfg)


model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
model = model.to(device)
weights = torch.load('./DSDG/DUM/checkpoint/CDCN_U_P1_updated.pkl', map_location=device)
model.load_state_dict(weights)
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.00005)
model.eval()


class Normaliztion_valtest(object):
    """
        same as mxnet, normalize into [-1, 1]
        image = (image - 127.5)/128
    """
    def __call__(self, image_x):
        image_x = (image_x - 127.5) / 128  # [-1,1]
        return image_x


def prepare_data(images, boxes, depths):
    transform = transforms.Compose([Normaliztion_valtest()])
    files_total = 1
    image_x = np.zeros((files_total, 256, 256, 3))
    depth_x = np.ones((files_total, 32, 32))

    for i, (image, bbox, depth_img) in enumerate(
            zip(images, boxes, depths)):
        x, y, w, h = bbox
        depth_img = cv.cvtColor(depth_img, cv.COLOR_RGB2GRAY)
        image = image[y:y + h, x:x + w]
        depth_img = depth_img[y:y + h, x:x + w]

        image_x[i, :, :, :] = cv.resize(image, (256, 256))
        # transform to binary mask --> threshold = 0 
        depth_x[i, :, :] = cv.resize(depth_img, (32, 32))
    image_x = image_x.transpose((0, 3, 1, 2))
    image_x = transform(image_x)
    image_x = torch.from_numpy(image_x.astype(float)).float()
    depth_x = torch.from_numpy(depth_x.astype(float)).float()
    return image_x, depth_x


def find_largest_face(faces):
    largest_face = None
    largest_area = 0

    for (x, y, w, h) in faces:
        area = w * h
        if area > largest_area:
            largest_area = area
            largest_face = (x, y, w, h)
    return largest_face


def inference(img, model_name):
    confidences = {}
    grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    faces = faceClassifier.detectMultiScale(
        grey, scaleFactor=1.1, minNeighbors=4)
    face = find_largest_face(faces)
    
    if face is not None:
        x, y, w, h = face
        faceRegion = img[y:y + h, x:x + w]
        faceRegion = cv.cvtColor(faceRegion, cv.COLOR_BGR2RGB)
        faceRegion = tfms(faceRegion)
        faceRegion = faceRegion.unsqueeze(0)

        if model_name == 'DeePixBiS':
            mask, binary = model.forward(faceRegion)
            res = torch.mean(mask).item()
            cls = 'Real' if res >= pix_threshhold else 'Spoof'
            res = 1 - res

        else:
            dense_flag = True
            boxes = list(face)
            boxes.append(1)
            param_lst, roi_box_lst = tddfa(img, [boxes])
            
            ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
            depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=False)
            with torch.no_grad():
                map_score_list = []
                image_x, map_x = prepare_data([img], [list(face)], [depth_img])
                # get the inputs
                image_x = image_x.unsqueeze(0)
                map_x = map_x.unsqueeze(0)
                inputs = image_x.to(device)
                test_maps = map_x.to(device)
                optimizer.zero_grad()
                
                map_score = 0.0
                for frame_t in range(inputs.shape[1]):
                    mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs[:, frame_t, :, :, :])

                    score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
                    map_score += score_norm
                map_score = map_score / inputs.shape[1]
                map_score_list.append(map_score)

            res = map_score_list[0].item()
            if res > 10:
                res = 0.0
            cls = 'Real' if res >= dsdg_threshold else 'Spoof'
            res = res * 100

        label = f'{cls} {res:.2f}'
        confidences = {label: res}
        color = color = (0, 255, 0) if cls == 'Real' else (255, 0, 0)
        cv.rectangle(img, (x, y), (x + w, y + h), color, 2)
        cv.putText(img, label, (x, y + h + 30),
                    cv.FONT_HERSHEY_COMPLEX, 1, color)

    return img, confidences


if __name__ == '__main__':
    demo = gr.Interface(
        fn=inference,
        inputs=[gr.Image(source='webcam', shape=None, type='numpy'),
                Dropdown(["DeePixBiS", "DSDG"], value="DeePixBiS")],
        outputs=["image", gr.Label(num_top_classes=2)],
        examples=examples).queue(concurrency_count=2)
    demo.launch(share=False)