File size: 4,441 Bytes
ddadf19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
#!/usr/bin/env python3
# coding: utf-8
import torch.nn as nn
__all__ = ['ResNet', 'resnet22']
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
"""Another Strucutre used in caffe-resnet25"""
def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False)
self.bn1 = nn.BatchNorm2d(32) # 32 is input channels number
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 128, layers[0], stride=2)
self.layer2 = self._make_layer(block, 256, layers[1], stride=2)
self.layer3 = self._make_layer(block, 512, layers[2], stride=2)
self.conv_param = nn.Conv2d(512, num_classes, 1)
# self.conv_lm = nn.Conv2d(512, num_landmarks, 1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc_flg = fc_flg
# parameter initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 1.
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
# 2. kaiming normal
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
# x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
# if self.fc_flg:
# x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
# else:
xp = self.conv_param(x)
xp = self.avgpool(xp)
xp = xp.view(xp.size(0), -1)
# xl = self.conv_lm(x)
# xl = self.avgpool(xl)
# xl = xl.view(xl.size(0), -1)
return xp # , xl
def resnet22(**kwargs):
model = ResNet(
BasicBlock,
[3, 4, 3],
num_landmarks=kwargs.get('num_landmarks', 136),
input_channel=kwargs.get('input_channel', 3),
fc_flg=False
)
return model
def main():
pass
if __name__ == '__main__':
main()
|