File size: 4,441 Bytes
ddadf19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python3
# coding: utf-8

import torch.nn as nn

__all__ = ['ResNet', 'resnet22']


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    """Another Strucutre used in caffe-resnet25"""

    def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False)
        self.bn1 = nn.BatchNorm2d(32)  # 32 is input channels number
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(64)
        self.relu2 = nn.ReLU(inplace=True)

        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 128, layers[0], stride=2)
        self.layer2 = self._make_layer(block, 256, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 512, layers[2], stride=2)

        self.conv_param = nn.Conv2d(512, num_classes, 1)
        # self.conv_lm = nn.Conv2d(512, num_landmarks, 1)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        # self.fc = nn.Linear(512 * block.expansion, num_classes)
        self.fc_flg = fc_flg

        # parameter initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # 1.
                # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                # m.weight.data.normal_(0, math.sqrt(2. / n))

                # 2. kaiming normal
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)

        # x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        # if self.fc_flg:
        #     x = self.avgpool(x)
        #     x = x.view(x.size(0), -1)
        #     x = self.fc(x)
        # else:
        xp = self.conv_param(x)
        xp = self.avgpool(xp)
        xp = xp.view(xp.size(0), -1)

        # xl = self.conv_lm(x)
        # xl = self.avgpool(xl)
        # xl = xl.view(xl.size(0), -1)

        return xp  # , xl


def resnet22(**kwargs):
    model = ResNet(
        BasicBlock,
        [3, 4, 3],
        num_landmarks=kwargs.get('num_landmarks', 136),
        input_channel=kwargs.get('input_channel', 3),
        fc_flg=False
    )
    return model


def main():
    pass


if __name__ == '__main__':
    main()